Femtosecond nonlinear spectroscopy at surfaces: Second-harmonic probing of hole burning at the Si(111)7x7 surface and fourier-transform sum-frequency vibrational spectroscopy (open access)

Femtosecond nonlinear spectroscopy at surfaces: Second-harmonic probing of hole burning at the Si(111)7x7 surface and fourier-transform sum-frequency vibrational spectroscopy

The high temporal resolution and broad bandwidth of a femtosecond laser system are exploited in a pair of nonlinear optical studies of surfaces. The dephasing dynamics of resonances associated with the adatom dangling bonds of the Si(111)7 x 7 surface are explored by transient second-harmonic hole burning, a process that can be described as a fourth-order nonlinear optical process. Spectral holes produced by a 100 fs pump pulse at about 800 nm are probed by the second harmonic signal of a 100 fs pulse tunable around 800 nm. The measured spectral holes yield homogeneous dephasing times of a few tens of femtoseconds. Fits with a Lorentzian spectral hole centered at zero probe detuning show a linear dependence of the hole width on pump fluence, which suggests that charge carrier-carrier scattering dominates the dephasing dynamics at the measured excitation densities. Extrapolation of the deduced homogeneous dephasing times to zero excitation density yields an intrinsic dephasing time of {approx} 70 fs. The presence of a secondary spectral hole indicates that scattering of the surface electrons with surface optical phonons at 570 cm{sup -1} occurs within the first 200 fs after excitation. The broad bandwidth of femtosecond IR pulses is used to perform …
Date: November 24, 2004
Creator: McGuire, John Andrew
System: The UNT Digital Library
Ion Acceleration from the Interaction of Ultra-Intense Lasers with Solid Foils (open access)

Ion Acceleration from the Interaction of Ultra-Intense Lasers with Solid Foils

The discovery that ultra-intense laser pulses (I > 10{sup 18} W/cm{sup 2}) can produce short pulse, high energy proton beams has renewed interest in the fundamental mechanisms that govern particle acceleration from laser-solid interactions. Experiments have shown that protons present as hydrocarbon contaminants on laser targets can be accelerated up to energies > 50 MeV. Different theoretical models that explain the observed results have been proposed. One model describes a front-surface acceleration mechanism based on the ponderomotive potential of the laser pulse. At high intensities (I > 10{sup 18} W/cm{sup 2}), the quiver energy of an electron oscillating in the electric field of the laser pulse exceeds the electron rest mass, requiring the consideration of relativistic effects. The relativistically correct ponderomotive potential is given by U{sub p} = ([1 + I{lambda}{sup 2}/1.3 x 10{sup 18}]{sup 1/2} - 1) m{sub o}c{sup 2}, where I{lambda}{sup 2} is the irradiance in W {micro}m{sup 2}/cm{sup 2} and m{sub o}c{sup 2} is the electron rest mass. At laser irradiance of I{lambda}{sup 2} {approx} 10{sup 20} W {micro}m{sup 2}/cm{sup 2}, the ponderomotive potential can be of order several MeV. A few recent experiments--discussed in Chapter 3 of this thesis--consider this ponderomotive potential sufficiently strong to accelerate …
Date: November 24, 2004
Creator: Allen, M
System: The UNT Digital Library