2 Matching Results

Results open in a new window/tab.

Grassland/Atmosphere Response to Changing Climate: Coupling Regional and Local Scales. Final Report (open access)

Grassland/Atmosphere Response to Changing Climate: Coupling Regional and Local Scales. Final Report

The objectives of the study were: to evaluate the response of grassland ecosystems to atmospheric change at regional and site scales, and to develop multiscaled modeling systems to relate ecological and atmospheric models with different spatial and temporal resolutions. A menu-driven shell was developed to facilitate use of models at different temporal scales and to facilitate exchange information between models at different temporal scales. A detailed ecosystem model predicted that C{sub 3} temperate grasslands wig respond more strongly to elevated CO{sub 2} than temperate C{sub 4} grasslands in the short-term while a large positive N-PP response was predicted for a C{sub 4} Kenyan grassland. Long-term climate change scenarios produced either decreases or increases in Colorado plant productivity (NPP) depending on rainfall, but uniform increases in N-PP were predicted in Kenya. Elevated CO{sub 2} is likely to have little effect on ecosystem carbon storage in Colorado while it will increase carbon storage in Kenya. A synoptic climate classification processor (SCP) was developed to evaluate results of GCM climate sensitivity experiments. Roughly 80% agreement was achieved with manual classifications. Comparison of lx and 2xCO{sub 2} GCM Simulations revealed relatively small differences.
Date: October 1, 1993
Creator: Coughenour, M. B.; Kittel, T. G. F.; Pielke, R. A. & Eastman, J.
System: The UNT Digital Library
Detection of blockages in process piping Los Alamos National Laboratory. Final report (open access)

Detection of blockages in process piping Los Alamos National Laboratory. Final report

The attached reports and proposal summarize the work to date for the revised Ultrasonic Resonance Interferometry system. The most recent set of experiments, to determine the accuracy of the implementation of a new calibration curve to account for the variation of the wave speed with temperature, were never completed due to lack of funding. The general focus of the ongoing work, outlined in the weekly reports, had been improvements in accuracy of the measurement system using software modifications. The future focus of the project, as outlined in the attached proposal, was to incorporate a thermal conductivity probe with the ultrasonic measurement system to allow measurement of fluids which have a bimodal wavespeed vs. molarity relation.
Date: October 1, 1994
Creator: Histand, M.B.
System: The UNT Digital Library