CHARACTERIZATION REPORT FOR STRONTIUM TITANATE IN SWSA 7 AND ADJACENT PARCELS IN SUPPORT OF THE NATIONAL PRIORITIES LIST SITE BOUNDARY DEFINITION PROGRAM OAK RIDGE, TENNESSEE (open access)

CHARACTERIZATION REPORT FOR STRONTIUM TITANATE IN SWSA 7 AND ADJACENT PARCELS IN SUPPORT OF THE NATIONAL PRIORITIES LIST SITE BOUNDARY DEFINITION PROGRAM OAK RIDGE, TENNESSEE

The U.S. Department of Energy (DOE) Oak Ridge Office requested support from the Oak Ridge Institute for Science and Education (ORISE) contract to delineate the extent of strontium titanate (SrTiO3) contamination in and around Solid Waste Storage Area (SWSA) 7 as part of the Oak Ridge National Priorities List Site boundary definition program. The study area is presented in Fig. 1.1 relative to the Oak Ridge Reservation (ORR). The investigation was executed according to Sampling and Analysis Plan/Quality Assurance Project Plan (SAP/QAPP) (DOE 2011) to supplement previous investigations noted below and to determine what areas, if any, have been adversely impacted by site operations.
Date: October 10, 2011
Creator: King, David A.
System: The UNT Digital Library
Injection of large transverse emittance EBIS beams in booster (open access)

Injection of large transverse emittance EBIS beams in booster

During the commissioning of EBIS beams in Booster in November 2010 and in April, May and June 2011, it was found that the transverse emittances of the EBIS beams just upstream of Booster were much larger than expected. Beam emittances of 11{pi} mm milliradians had been expected, but numbers 3 to 4 times larger were measured. Here and throughout this note the beam emittance, {pi}{epsilon}{sub 0}, is taken to be the area of the smallest ellipse that contains 95% of the beam. We call this smallest ellipse the beam ellipse. If the beam distribution is gaussian, the rms emittance of the distribution is very nearly one sixth the area of the beam ellipse. The normalized rms emittance is the rms emittance times the relativistic factor {beta}{gamma} = 0.06564. This amounts to 0.12{pi} mm milliradians for the 11{pi} mm milliradian beam ellipse. In [1] we modeled the injection and turn-by-turn evolution of an 11{pi} mm milliradian beam ellipse in the horizontal plane in Booster. It was shown that with the present injection system, up to 4 turns of this beam could be injected and stored in Booster without loss. In the present note we extend this analysis to the injection of …
Date: October 10, 2011
Creator: Gardner, C.
System: The UNT Digital Library
Overview of the Facility Safeguardability Analysis (FSA) Process (open access)

Overview of the Facility Safeguardability Analysis (FSA) Process

The safeguards system of the International Atomic Energy Agency (IAEA) provides the international community with credible assurance that a State is fulfilling its nonproliferation obligations. The IAEA draws such conclusions from the evaluation of all available information. Effective and cost-efficient IAEA safeguards at the facility level are, and will remain, an important element of this “State-level” approach. Efficiently used, the Safeguards by Design (SBD) methodologies , , , now being developed can contribute to effective and cost-efficient facility-level safeguards. The Facility Safeguardability Assessment (FSA) introduced here supports SBD in three areas. 1. It describes necessary interactions between the IAEA, the State regulator, and the owner / designer of a new or modified facility to determine where SBD efforts can be productively applied, 2. It presents a screening approach intended to identify potential safeguard issues for; a) design changes to existing facilities; b) new facilities similar to existing facilities with approved safeguards approaches, and c) new designs, 3. It identifies resources (the FSA toolkit), such as good practice guides, design guidance, and safeguardability evaluation methods that can be used by the owner/designer to develop solutions for potential safeguards issues during the interactions with the State regulator and IAEA. FSA presents a …
Date: October 10, 2011
Creator: Bari, Robert A.; Hockert, John; Wonder, Edward F.; Johnson, Shirley J.; Wigeland, Roald & Zentner, Michael D.
System: The UNT Digital Library
Camera assembly design proposal for SRF cavity image collection (open access)

Camera assembly design proposal for SRF cavity image collection

This project seeks to collect images from the inside of a superconducting radio frequency (SRF) large grain niobium cavity during vertical testing. These images will provide information on multipacting and other phenomena occurring in the SRF cavity during these tests. Multipacting, a process that involves an electron buildup in the cavity and concurrent loss of RF power, is thought to be occurring near the cathode in the SRF structure. Images of electron emission in the structure will help diagnose the source of multipacting in the cavity. Multipacting sources may be eliminated with an alteration of geometric or resonant conditions in the SRF structure. Other phenomena, including unexplained light emissions previously discovered at SLAC, may be present in the cavity. In order to effectively capture images of these events during testing, a camera assembly needs to be installed to the bottom of the RF structure. The SRF assembly operates under extreme environmental conditions: it is kept in a dewar in a bath of 2K liquid helium during these tests, is pumped down to ultra-high vacuum, and is subjected to RF voltages. Because of this, the camera needs to exist as a separate assembly attached to the bottom of the cavity. The …
Date: October 10, 2011
Creator: Tuozzolo, S.
System: The UNT Digital Library
REVISED FINAL REPORT – INDEPENDENT VERIFICATION SURVEY ACTIVITIES AT THE SEPARATIONS PROCESS RESEARCH UNIT SITES, NISKAYUNA, NEW YORK – DCN 0496-SR-06-1 (open access)

REVISED FINAL REPORT – INDEPENDENT VERIFICATION SURVEY ACTIVITIES AT THE SEPARATIONS PROCESS RESEARCH UNIT SITES, NISKAYUNA, NEW YORK – DCN 0496-SR-06-1

The Separations Process Research Unit (SPRU) complex located on the Knolls Atomic Power Laboratory (KAPL) site in Niskayuna, New York, was constructed in the late 1940s to research the chemical separation of plutonium and uranium (Figure A-1). SPRU operated as a laboratory scale research facility between February 1950 and October 1953. The research activities ceased following the successful development of the reduction oxidation and plutonium/uranium extraction processes. The oxidation and extraction processes were subsequently developed for large scale use by the Hanford and Savannah River sites (aRc 2008a). Decommissioning of the SPRU facilities began in October 1953 and continued through the 1990s.
Date: October 10, 2011
Creator: Harpenau, Evan
System: The UNT Digital Library
Compliance Verification Paths for Residential and Commercial Energy Codes (open access)

Compliance Verification Paths for Residential and Commercial Energy Codes

This report looks at different ways to verify energy code compliance and to ensure that the energy efficiency goals of an adopted document are achieved. Conformity assessment is the body of work that ensures compliance, including activities that can ensure residential and commercial buildings satisfy energy codes and standards. This report identifies and discusses conformity-assessment activities and provides guidance for conducting assessments.
Date: October 10, 2011
Creator: Conover, David R.; Makela, Eric J.; Fannin, Jerica D. & Sullivan, Robin S.
System: The UNT Digital Library
INDEPENDENT CONFIRMATORY SURVEY REPORT FOR THE REACTOR BUILDING, HOT LABORATORY, PRIMARY PUMP HOUSE, AND LAND AREAS AT THE PLUM BROOK REACTOR FACILITY, SANDUSKY, OHIO (open access)

INDEPENDENT CONFIRMATORY SURVEY REPORT FOR THE REACTOR BUILDING, HOT LABORATORY, PRIMARY PUMP HOUSE, AND LAND AREAS AT THE PLUM BROOK REACTOR FACILITY, SANDUSKY, OHIO

In 1941, the War Department acquired approximately 9,000 acres of land near Sandusky, Ohio and constructed a munitions plant. The Plum Brook Ordnance Works Plant produced munitions, such as TNT, until the end of World War II. Following the war, the land remained idle until the National Advisory Committee for Aeronautics later called the National Aeronautics and Space Administration (NASA) obtained 500 acres to construct a nuclear research reactor designed to study the effects of radiation on materials used in space flight. The research reactor was put into operation in 1961 and was the first of fifteen test facilities eventually built by NASA at the Plum Brook Station. By 1963, NASA had acquired the remaining land at Plum Brook for these additional test facilities
Date: October 10, 2011
Creator: Bailey, Erika N.
System: The UNT Digital Library
Multi-dimensional Modeling of Nova with Realistic Nuclear Physics (open access)

Multi-dimensional Modeling of Nova with Realistic Nuclear Physics

None
Date: October 10, 2011
Creator: Krueger, B; Zingale, M & Hoffman, R
System: The UNT Digital Library