178 Matching Results

Results open in a new window/tab.

Texas Legislative Council Annual Financial Report: 2011 (open access)

Texas Legislative Council Annual Financial Report: 2011

Annual financial report of the Texas Legislative Council documenting income, expenditures, and other relevant financial information for fiscal year 2011.
Date: October 1, 2011
Creator: Texas. Legislature. Legislative Council.
System: The Portal to Texas History
Solar Schools Assessment and Implementation Project: Financing Options for Solar Installations on K-12 Schools (open access)

Solar Schools Assessment and Implementation Project: Financing Options for Solar Installations on K-12 Schools

This report focuses on financial options developed specifically for renewable energy and energy efficiency projects in three California public school districts. Solar energy systems installed on public schools have a number of benefits that include utility bill savings, reductions in greenhouse gas emissions (GHGs) and other toxic air contaminants, job creation, demonstrating environmental leadership, and creating learning opportunities for students. In the 2011 economic environment, the ability to generate general-fund savings as a result of reducing utility bills has become a primary motivator for school districts trying to cut costs. To achieve meaningful savings, the size of the photovoltaic (PV) systems installed (both individually on any one school and collectively across a district) becomes much more important; larger systems are required to have a material impact on savings. Larger PV systems require a significant financial commitment and financing therefore becomes a critical element in the transaction. In simple terms, school districts can use two primary types of ownership models to obtain solar installations and cost savings across a school district. The PV installations can be financed and owned directly by the districts themselves. Alternatively, there are financing structures whereby another entity, such as a solar developer or its investors, actually …
Date: October 1, 2011
Creator: Coughlin, J. & Kandt, A.
System: The UNT Digital Library
Optical Characterization Laboratory (Fact Sheet) (open access)

Optical Characterization Laboratory (Fact Sheet)

This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Optical Characterization Laboratory at the Energy Systems Integration Facility. The Optical Characterization Laboratory at NREL's Energy Systems Integration Facility (ESIF) conducts optical characterization of large solar concentration devices. Concentration solar power (CSP) mirror panels and concentrating solar systems are tested with an emphasis is on measurement of parabolic trough mirror panels. The Optical Characterization Laboratory provides state-of-the-art characterization and testing capabilities for assessing the optical surface quality and optical performance for various CSP technologies including parabolic troughs, linear Fresnel, dishes, and heliostats.
Date: October 1, 2011
Creator: unknown
System: The UNT Digital Library
Toyota Prius Plug-In HEV: A Plug-In Hybrid Electric Car in NREL's Advanced Technology Vehicle Fleet (Fact Sheet) (open access)

Toyota Prius Plug-In HEV: A Plug-In Hybrid Electric Car in NREL's Advanced Technology Vehicle Fleet (Fact Sheet)

This fact sheet highlights the Toyota Prius plug-in HEV, a plug-in hybrid electric car in the advanced technology vehicle fleet at the National Renewable Energy Laboratory (NREL). In partnership with the University of Colorado, NREL uses the vehicle for grid-integration studies and for testing new hardware and charge-management algorithms. NREL's advanced technology vehicle fleet features promising technologies to increase efficiency and reduce emissions without sacrificing safety or comfort. The fleet serves as a technology showcase, helping visitors learn about innovative vehicles that are available today or are in development. Vehicles in the fleet are representative of current, advanced, prototype, and emerging technologies.
Date: October 1, 2011
Creator: unknown
System: The UNT Digital Library
San Diego, California: Solar in Action (Brochure) (open access)

San Diego, California: Solar in Action (Brochure)

This brochure provides an overview of the challenges and successes of San Diego, CA, a 2007 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.
Date: October 1, 2011
Creator: unknown
System: The UNT Digital Library
CRADA Final Report for CRADA Number ORNL00-0605: Advanced Engine/Aftertreatment System R&D (open access)

CRADA Final Report for CRADA Number ORNL00-0605: Advanced Engine/Aftertreatment System R&D

Navistar and ORNL established this CRADA to develop diesel engine aftertreatment configurations and control strategies that could meet emissions regulations while maintaining or improving vehicle efficiency. The early years of the project focused on reducing the fuel penalty associated with lean NOx trap (LNT), also known as NOx adsorber catalyst regeneration and desulfation. While Navistar pursued engine-based (in-cylinder) approaches to LNT regeneration, complementary experiments at ORNL focused on in-exhaust fuel injection. ORNL developed a PC-based controller for transient electronic control of EGR valve position, intake throttle position, and actuation of fuel injectors in the exhaust system of a Navistar engine installed at Oak Ridge. Aftertreatment systems consisting of different diesel oxidation catalysts (DOCs) in conjunction with a diesel particle filter and LNT were evaluated under quasi-steady-state conditions. Hydrocarbon (HC) species were measured at multiple locations in the exhaust system with Gas chromatograph mass spectrometry (GC-MS) and Fourier transform infrared (FTIR) spectroscopy. Under full-load, rated speed conditions, injection of fuel upstream of the DOC reduced the fuel penalty for a given level of NOx reduction by 10-20%. GC-MS showed that fuel compounds were 'cracked' into smaller hydrocarbon species over the DOC, particularly light alkenes. GC-MS analysis of HC species entering and …
Date: October 1, 2011
Creator: Pihl, Josh A; West, Brian H; Toops, Todd J; Adelman, Brad & Derybowski, Edward
System: The UNT Digital Library
Berkeley, California: Solar in Action (Brochure) (open access)

Berkeley, California: Solar in Action (Brochure)

This brochure provides an overview of the challenges and successes of Berkeley, CA, a 2007 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.
Date: October 1, 2011
Creator: unknown
System: The UNT Digital Library
Iraq liquid radioactive waste tanks maintenance and monitoring program plan. (open access)

Iraq liquid radioactive waste tanks maintenance and monitoring program plan.

The purpose of this report is to develop a project management plan for maintaining and monitoring liquid radioactive waste tanks at Iraq's Al-Tuwaitha Nuclear Research Center. Based on information from several sources, the Al-Tuwaitha site has approximately 30 waste tanks that contain varying amounts of liquid or sludge radioactive waste. All of the tanks have been non-operational for over 20 years and most have limited characterization. The program plan embodied in this document provides guidance on conducting radiological surveys, posting radiation control areas and controlling access, performing tank hazard assessments to remove debris and gain access, and conducting routine tank inspections. This program plan provides general advice on how to sample and characterize tank contents, and how to prioritize tanks for soil sampling and borehole monitoring.
Date: October 1, 2011
Creator: Dennis, Matthew L.; Cochran, John Russell & Sol Shamsaldin, Emad (Iraq Ministry of Science and Technology)
System: The UNT Digital Library
Hydrogen Production Cost Estimate Using Biomass Gasification: Independent Review (open access)

Hydrogen Production Cost Estimate Using Biomass Gasification: Independent Review

This independent review is the conclusion arrived at from data collection, document reviews, interviews and deliberation from December 2010 through April 2011 and the technical potential of Hydrogen Production Cost Estimate Using Biomass Gasification. The Panel reviewed the current H2A case (Version 2.12, Case 01D) for hydrogen production via biomass gasification and identified four principal components of hydrogen levelized cost: CapEx; feedstock costs; project financing structure; efficiency/hydrogen yield. The panel reexamined the assumptions around these components and arrived at new estimates and approaches that better reflect the current technology and business environments.
Date: October 1, 2011
Creator: Ruth, M.
System: The UNT Digital Library
Mitsubishi iMiEV: An Electric Mini-Car in NREL's Advanced Technology Vehicle Fleet (Fact Sheet) (open access)

Mitsubishi iMiEV: An Electric Mini-Car in NREL's Advanced Technology Vehicle Fleet (Fact Sheet)

This fact sheet highlights the Mitsubishi iMiEV, an electric mini-car in the advanced technology vehicle fleet at the National Renewable Energy Laboratory (NREL). In support of the U.S. Department of Energy's fast-charging research efforts, NREL engineers are conducting charge and discharge performance testing on the vehicle. NREL's advanced technology vehicle fleet features promising technologies to increase efficiency and reduce emissions without sacrificing safety or comfort. The fleet serves as a technology showcase, helping visitors learn about innovative vehicles that are available today or are in development. Vehicles in the fleet are representative of current, advanced, prototype, and emerging technologies.
Date: October 1, 2011
Creator: unknown
System: The UNT Digital Library
Madison, Wisconsin: Solar in Action (Brochure) (open access)

Madison, Wisconsin: Solar in Action (Brochure)

This brochure provides an overview of the challenges and successes of Madison, WI, a 2007 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given.
Date: October 1, 2011
Creator: unknown
System: The UNT Digital Library
Fast neutron environments. (open access)

Fast neutron environments.

The goal of this LDRD project is to develop a rapid first-order experimental procedure for the testing of advanced cladding materials that may be considered for generation IV nuclear reactors. In order to investigate this, a technique was developed to expose the coupons of potential materials to high displacement damage at elevated temperatures to simulate the neutron environment expected in Generation IV reactors. This was completed through a high temperature high-energy heavy-ion implantation. The mechanical properties of the ion irradiated region were tested by either micropillar compression or nanoindentation to determine the local properties, as a function of the implantation dose and exposure temperature. In order to directly compare the microstructural evolution and property degradation from the accelerated testing and classical neutron testing, 316L, 409, and 420 stainless steels were tested. In addition, two sets of diffusion couples from 316L and HT9 stainless steels with various refractory metals. This study has shown that if the ion irradiation size scale is taken into consideration when developing and analyzing the mechanical property data, significant insight into the structural properties of the potential cladding materials can be gained in about a week.
Date: October 1, 2011
Creator: Buchheit, Thomas Edward; Kotula, Paul Gabriel; Lu, Ping; Brewer, Luke N. (Naval Postgraduate School, Monterey, CA); Goods, Steven Howard (Sandia National Laboratories, Livermore, CA); Foiles, Stephen Martin et al.
System: The UNT Digital Library
Using Waste Heat for External Processes (English/Chinese) (Fact Sheet) (open access)

Using Waste Heat for External Processes (English/Chinese) (Fact Sheet)

Chinese translation of the Using Waste Heat for External Processes fact sheet. Provides suggestions on how to use waste heat in industrial applications. The temperature of exhaust gases from fuel-fired industrial processes depends mainly on the process temperature and the waste heat recovery method. Figure 1 shows the heat lost in exhaust gases at various exhaust gas temperatures and percentages of excess air. Energy from gases exhausted from higher temperature processes (primary processes) can be recovered and used for lower temperature processes (secondary processes). One example is to generate steam using waste heat boilers for the fluid heaters used in petroleum crude processing. In addition, many companies install heat exchangers on the exhaust stacks of furnaces and ovens to produce hot water or to generate hot air for space heating.
Date: October 1, 2011
Creator: unknown
System: The UNT Digital Library
Photovoltaics (Fact Sheet) (open access)

Photovoltaics (Fact Sheet)

DOE works with national labs, academia, and industry to support the domestic photovoltaics (PV) industry and research enterprise. SunShot aims to achieve widespread, unsubsidized cost-competitiveness through an applied research and development (R&D) portfolio spanning PV materials, devices, and manufacturing technologies.
Date: October 1, 2011
Creator: unknown
System: The UNT Digital Library
Dynamic heat capacity of the east model and of a bead-spring polymer model. (open access)

Dynamic heat capacity of the east model and of a bead-spring polymer model.

In this report we have presented a brief review of the glass transition and one means of characterizing glassy materials: linear and nonlinear thermodynamic oscillatory experiments to extract the dynamic heat capacity. We have applied these methods to the east model (a variation of the Ising model for glass forming systems) and a simple polymeric system via molecular dynamics simulation, and our results match what is seen in experiment. For the east model, since the dynamics are so simple, a mathematical model is developed that matches the simulated dynamics. For the polymeric system, since the system is a simulation, we can instantaneously 'quench' the system - removing all vibrational energy - to separate the vibrational dynamics from dynamics associated with particle rearrangements. This shows that the long-time glassy dynamics are due entirely to the particle rearrangements, i.e. basin jumping on the potential energy landscape. Finally, we present an extension of linear dynamic heat capacity to the nonlinear regime.
Date: October 1, 2011
Creator: McCoy, John Dwane (New Mexico Institute of Mining and Technology, Socorro, NM); Brown, Jonathan R. (New Mexico Institute of Mining and Technology, Socorro, NM) & Adolf, Douglas Brian
System: The UNT Digital Library
Integration of High Temperature Gas-cooled Reactor Technology with Oil Sands Processes (open access)

Integration of High Temperature Gas-cooled Reactor Technology with Oil Sands Processes

This paper summarizes an evaluation of siting an HTGR plant in a remote area supplying steam, electricity and high temperature gas for recovery and upgrading of unconventional crude oil from oil sands. The area selected for this evaluation is the Alberta Canada oil sands. This is a very fertile and active area for bitumen recovery and upgrading with significant quantities piped to refineries in Canada and the U.S Additionally data on the energy consumption and other factors that are required to complete the evaluation of HTGR application is readily available in the public domain. There is also interest by the Alberta oil sands producers (OSP) in identifying alternative energy sources for their operations. It should be noted, however, that the results of this evaluation could be applied to any similar oil sands area.
Date: October 1, 2011
Creator: Demick, L. E.
System: The UNT Digital Library
Collaborative Lubricating Oil Study on Emissions: November 28, 2006 - March 31, 2011 (open access)

Collaborative Lubricating Oil Study on Emissions: November 28, 2006 - March 31, 2011

The Collaborative Lubricating Oil Study on Emissions (CLOSE) project was a pilot investigation of how fuels and crankcase lubricants contribute to the formation of particulate matter (PM) and semi-volatile organic compounds (SVOC) in vehicle exhaust. As limited vehicles were tested, results are not representative of the whole on-road fleet. Long-term effects were not investigated. Pairs of vehicles (one normal PM emitting, one high-PM emitting) from four categories were selected: light-duty (LD) gasoline cars, medium-duty (MD) diesel trucks, heavy-duty (HD) natural-gas-fueled buses, and HD diesel buses. HD vehicles procured did not exhibit higher PM emissions, and thus were labeled high mileage (HM). Fuels evaluated were non-ethanol gasoline (E0), 10 percent ethanol (E10), conventional low-sulfur TxLED diesel, 20% biodiesel (B20), and natural gas. Temperature effects (20 degrees F, 72 degrees F) were evaluated on LD and MD vehicles. Lubricating oil vintage effects (fresh and aged) were evaluated on all vehicles. LD and MD vehicles were operated on a dynamometer over the California Unified Driving Cycle, while HD vehicles followed the Heavy Duty Urban Dynamometer Driving Schedule. Regulated and unregulated emissions were measured. Chemical markers from the unregulated emissions measurements and a tracer were utilized to estimate the lubricant contribution to PM.
Date: October 1, 2011
Creator: Carroll, J. N.; Khalek, I. A.; Smith, L. R.; Fujita, E. & Zielinska, B.
System: The UNT Digital Library
NREL Scientists Reveal Origin of Diverse Melting Behaviors of Aluminum Nanoclusters (Fact Sheet) (open access)

NREL Scientists Reveal Origin of Diverse Melting Behaviors of Aluminum Nanoclusters (Fact Sheet)

Research reveals active role of cluster symmetries on the size-sensitive, diverse melting behaviors of metallic nanoclusters, providing insight to understanding phase changes of nanoparticles for thermal energy storage. Unlike macroscopic bulk materials, intermediate-sized nanoclusters with around 55 atoms inherently exhibit size-sensitive melting changes: adding just a single atom to a nanocluster can cause a dramatic change in melting behavior. Microscopic understanding of thermal behaviors of metal nanoclusters is important for nanoscale catalysis and thermal energy storage applications. However, it is a challenge to obtain a structural interpretation at the atomic level from measured thermodynamic quantities such as heat capacity. Using ab initio molecular dynamics simulations, scientists at the National Renewable Energy Laboratory (NREL) revealed a clear correlation between the diverse melting behaviors of aluminum nanoclusters and cluster core symmetries. These simulations reproduced, for the first time, the size-sensitive heat capacities of aluminum nanoclusters, which exhibit several distinctive shapes associated with the diverse melting behaviors of the clusters. The size-dependent, diverse melting behaviors of the aluminum clusters are attributed to the reduced symmetry (from Td {yields} D2d {yields} Cs) with increasing the cluster sizes and can be used to help design thermal storage materials.
Date: October 1, 2011
Creator: unknown
System: The UNT Digital Library
Low Cost Thin Film Building-Integrated PV Systems: Cooperative Research and Development Final Report, CRADA Number CRD-07-239 (open access)

Low Cost Thin Film Building-Integrated PV Systems: Cooperative Research and Development Final Report, CRADA Number CRD-07-239

In this CRADA, NREL's Silicon group members performed the following research activities: (1) investigation of the role of hydrogen in growth of a mixed-phase nc-Si:H/a-Si:H material; (2) role of hydrogen in light-induced degradation of a-Si:H and development of Staebler-Wronski effect resistive a-Si:H; and (3) performing characterizations of UniSolar's a-Si:H and nc-Si materials, with goal to help optimizing large-area uniformity and quality of the UniSolar's nanocrystalline Si:H.
Date: October 1, 2011
Creator: Stradins, P.
System: The UNT Digital Library
Nanomanufacturing : nano-structured materials made layer-by-layer. (open access)

Nanomanufacturing : nano-structured materials made layer-by-layer.

Large-scale, high-throughput production of nano-structured materials (i.e. nanomanufacturing) is a strategic area in manufacturing, with markets projected to exceed $1T by 2015. Nanomanufacturing is still in its infancy; process/product developments are costly and only touch on potential opportunities enabled by growing nanoscience discoveries. The greatest promise for high-volume manufacturing lies in age-old coating and imprinting operations. For materials with tailored nm-scale structure, imprinting/embossing must be achieved at high speeds (roll-to-roll) and/or over large areas (batch operation) with feature sizes less than 100 nm. Dispersion coatings with nanoparticles can also tailor structure through self- or directed-assembly. Layering films structured with these processes have tremendous potential for efficient manufacturing of microelectronics, photovoltaics and other topical nano-structured devices. This project is designed to perform the requisite R and D to bring Sandia's technology base in computational mechanics to bear on this scale-up problem. Project focus is enforced by addressing a promising imprinting process currently being commercialized.
Date: October 1, 2011
Creator: Cox, James V.; Cheng, Shengfeng; Grest, Gary Stephen; Tjiptowidjojo, Kristianto (University of New Mexico); Reedy, Earl David, Jr.; Fan, Hongyou et al.
System: The UNT Digital Library
FY2011 Annual Report for the Actinide Isomer Detection Project (open access)

FY2011 Annual Report for the Actinide Isomer Detection Project

This project seeks to identify a new signature for actinide element detection in active interrogation. This technique works by exciting and identifying long-lived nuclear excited states (isomers) in the actinide isotopes and/or primary fission products. Observation of isomers in the fission products will provide a signature for fissile material. For the actinide isomers, the decay time and energy of the isomeric state is unique to a particular isotope, providing an unambiguous signature for SNM. This project entails isomer identification and characterization and neutron population studies. This document summarizes activities from its third year - completion of the isomer identification characterization experiments and initialization of the neutron population experiments. The population and decay of the isomeric state in 235U remain elusive, although a number of candidate gamma rays have been identified. In the course of the experiments, a number of fission fragment isomers were populated and measured [Ressler 2010]. The decays from these isomers may also provide a suitable signature for the presence of fissile material. Several measurements were conducted throughout this project. This report focuses on the results of an experiment conducted collaboratively by PNNL, LLNL and LBNL in December 2010 at LBNL. The measurement involved measuring the gamma-rays emitted …
Date: October 1, 2011
Creator: Warren, Glen A.; Francy, Christopher J.; Ressler, Jennifer J.; Erikson, Luke E.; Tatishvili, Gocha & Hatarik, R.
System: The UNT Digital Library
Offshore Wind Research (Fact Sheet) (open access)

Offshore Wind Research (Fact Sheet)

This 2-page fact sheet describes NREL's offshore wind research and development efforts and capabilities. The National Renewable Energy Laboratory is internationally recognized for offshore wind energy research and development (R&D). Its experience and capabilities cover a wide spectrum of wind energy disciplines. NREL's offshore wind R&D efforts focus on critical areas that address the long-term needs of the offshore wind energy industry and the Department of Energy (DOE). R&D efforts include: (1) Developing offshore design tools and methods; (2) Collaborating with international partners; (3) Testing offshore systems and developing standards; (4) Conducting economic analyses; (5) Characterizing offshore wind resources; and (6) Identifying and mitigating offshore wind grid integration challenges and barriers. NREL has developed and maintains a robust, open-source, modular computer-aided engineering (CAE) tool, known as FAST. FAST's state-of-the-art capabilities provide full dynamic system simulation for a range of offshore wind systems. It models the coupled aerodynamic, hydrodynamic, control system, and structural response of offshore wind systems to support the development of innovative wind technologies that are reliable and cost effective. FAST also provides dynamic models of wind turbines on offshore fixed-bottom systems for shallow and transitional depths and floating-platform systems in deep water, thus enabling design innovation and risk …
Date: October 1, 2011
Creator: unknown
System: The UNT Digital Library
SunLine Transit Agency Advanced Technology Fuel Cell Bus Evaluation: Second Results Report and Appendices (open access)

SunLine Transit Agency Advanced Technology Fuel Cell Bus Evaluation: Second Results Report and Appendices

This report describes operations at SunLine Transit Agency for their newest prototype fuel cell bus and five compressed natural gas (CNG) buses. In May 2010, SunLine began operating its sixth-generation hydrogen fueled bus, an Advanced Technology (AT) fuel cell bus that incorporates the latest design improvements to reduce weight and increase reliability and performance. The agency is collaborating with the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) to evaluate the bus in revenue service. This is the second results report for the AT fuel cell bus since it was placed in service, and it focuses on the newest data analysis and lessons learned since the previous report. The appendices, referenced in the main report, provide the full background for the evaluation. They will be updated as new information is collected but will contain the original background material from the first report.
Date: October 1, 2011
Creator: Eudy, L. & Chandler, K.
System: The UNT Digital Library
Acoustic Imaging Evaluation of Juvenile Salmonid Behavior in the Immediate Forebay of the Water Temperature Control Tower at Cougar Dam, 2010 (open access)

Acoustic Imaging Evaluation of Juvenile Salmonid Behavior in the Immediate Forebay of the Water Temperature Control Tower at Cougar Dam, 2010

This report presents the results of an evaluation of juvenile Chinook salmonid (Oncorhynchus tshawytscha) behavior in the immediate forebay of the Water Temperature Control (WTC) tower at Cougar Dam in 2010. The study was conducted by the Pacific Northwest National Laboratory for the U.S. Army Corps of Engineers. The overall goal of the study was to characterize juvenile salmonid behavior and movement patterns in the immediate forebay of the WTC tower for fisheries resource managers to use to make decisions on bioengineering designs for long-term structures and/or operations to facilitate safe downstream passage for juvenile salmonids. We collected acoustic imaging (Dual-Frequency Identification Sonar; DIDSON) data from February 1, 2010 through January 31, 2011 to evaluate juvenile salmonid behavior year-round in the immediate forebay surface layer of the WTC tower (within 20 m, depth 0-5 m). From October 28, 2010 through January 31, 2011 a BlueView acoustic camera was also deployed in an attempt to determine its usefulness for future studies as well as augment the DIDSON data. For the DIDSON data, we processed a total of 35 separate 24-h periods systematically covering every other week in the 12-month study. Two different 24-hour periods were processed for the BlueView data for …
Date: October 1, 2011
Creator: Khan, Fenton; Johnson, Gary E.; Royer, Ida M.; Phillips, Nathan RJ; Hughes, James S.; Fischer, Eric S. et al.
System: The UNT Digital Library