Hindered Diffusion of Asphaltenes at Elevated Temperature and Pressure Progress Report (open access)

Hindered Diffusion of Asphaltenes at Elevated Temperature and Pressure Progress Report

During this time period, experiments were performed to study the diffusion controlled uptake of quinoline and a coal asphaltene into porous carbon catalyst pellets. Cyclohexane and toluene were used as solvents for quinoline and the coal asphaltene respectively. The experiments were performed at 27 C and 75 C, at a pressure of 250 psi (inert gas) for the quinoline/cyclohexane system. For the coal asphaltene/toluene system, experiments were performed at 27 C, also at a pressure of 250 psi. These experiments were performed in a 20 cm{sup 3} microautoclave, the use of which is advantageous since it is economical from both a chemical procurement and waste disposal standpoint due to the small quantities of solvents and catalysts used. A C++ program was written to simulate data using a mathematical model which incorporated both diffusional and adsorption mechanisms. The simulation results showed that the mathematical model satisfactorily fitted the adsorptive diffusion of quinoline and the coal asphaltene onto a porous activated carbon. For the quinoline/cyclohexane system, the adsorption constant decreased with an increase in temperature. The adsorption constant for the coal asphaltene/toluene system at 27 C was found to be much higher than that of the quinoline/cyclohexane system at the same temperature. …
Date: October 7, 1999
Creator: Guin, James A. & Ramakrishnan, Ganesh
System: The UNT Digital Library
Hindered Diffusion of Asphaltenes at Elevated Temperature and Pressure Progress Report (open access)

Hindered Diffusion of Asphaltenes at Elevated Temperature and Pressure Progress Report

During this final time period of the project, work was carried out in two areas. A major amount of effort was devoted to preparation of the final technical report for the project. The data taken on the project were organized and the asphaltenes, solvents, and catalysts used in the diffusional uptake experiments were organized into various systems. Since a large portion of the time for this report was spent on the preparation of the final technical report itself, the executive summary of the final technical report has been included in this semi-annual report as indicative of the effort during this time period. In addition to work on the final technical report for the project, a limited experimental study of dye adsorption into active carbon particles was performed by an undergraduate student in chemical engineering, Mr. Zachery Emerson. The objective of this study was to compare the diffusional uptake performance in two different types of vessels, a stirred glass cell and the tubing microreactor, for a simple dye-water-carbon diffusional uptake system. Due to time limitations, only qualitative conclusions were drawn from this study.
Date: October 1, 2001
Creator: Guin, James A. & Emerson, Zachery
System: The UNT Digital Library