8 Matching Results

Results open in a new window/tab.

BDS Thin Film UV Antireflection Laser Damage Competition (open access)

BDS Thin Film UV Antireflection Laser Damage Competition

UV antireflection coatings are a challenging coating for high power laser applications as exemplified by the use of uncoated Brewster's windows in laser cavities. In order to understand the current laser resistance of UV AR coatings in the industrial and university sectors, a double blind laser damage competition was performed. The coatings have a maximum reflectance of 0.5% at 355 nm at normal incidence. Damage testing will be performed using the raster scan method with a 7.5 ns pulse length on a single testing facility to facilitate direct comparisons. In addition to the laser resistance results, details of deposition processes and coating materials will also be shared.
Date: October 26, 2010
Creator: Stolz, C J
System: The UNT Digital Library
Determination of laser damage initiation probability and growth on fused silica scratches (open access)

Determination of laser damage initiation probability and growth on fused silica scratches

Current methods for the manufacture of optical components inevitably leaves a variety of sub-surface imperfections including scratches of varying lengths and widths on even the finest finishes. It has recently been determined that these finishing imperfections are responsible for the majority of laser-induced damage for fluences typically used in ICF class lasers. We have developed methods of engineering subscale parts with a distribution of scratches mimicking those found on full scale fused silica parts. This much higher density of scratches provides a platform to measure low damage initiation probabilities sufficient to describe damage on large scale optics. In this work, damage probability per unit scratch length was characterized as a function of initial scratch width and post fabrication processing including acid-based etch mitigation processes. The susceptibility of damage initiation density along scratches was found to be strongly affected by the post etching material removal and initial scratch width. We have developed an automated processing procedure to document the damage initiations per width and per length of theses scratches. We show here how these tools can be employed to provide predictions of the performance of full size optics in laser systems operating at 351 nm. In addition we use these tools …
Date: October 26, 2010
Creator: Norton, M. A.; Carr, C. W.; Cross, D. A.; Negres, R. A.; Bude, J. D.; Steele, W. A. et al.
System: The UNT Digital Library
Internal Electric Field Behavior of Cadmium Zinc Telluride Radiation Detectors Under High Carrier Injection (open access)

Internal Electric Field Behavior of Cadmium Zinc Telluride Radiation Detectors Under High Carrier Injection

The behavior of the internal electric-field of nuclear-radiation detectors substantially affects the detector's performance. We investigated the distribution of the internal field in cadmium zinc telluride (CZT) detectors under high carrier injection. We noted the build-up of a space charge region near the cathode that produces a built-in field opposing the applied field. Its presence entails the collapse of the electric field in the rest of detector, other than the portion near the cathode. Such a space-charge region originates from serious hole-trapping in CZT. The device's operating temperature greatly affects the width of the space-charge region. With increasing temperature from 5 C to 35 C, its width expanded from about 1/6 to 1/2 of the total depth of the detector.
Date: October 26, 2010
Creator: Yang, G.; Bolotnikov, A. E.; Camarda, G. S.; Cui, Y.; Hossain, A.; Kim, K. H. et al.
System: The UNT Digital Library
Results of applying a non-evaporative mitigation technique to laser-initiated surface damage on fused-silica (open access)

Results of applying a non-evaporative mitigation technique to laser-initiated surface damage on fused-silica

We present results from a study to determine an acceptable CO{sub 2} laser-based non-evaporative mitigation protocol for use on surface damage sites in fused-silica optics. A promising protocol is identified and evaluated on a set of surface damage sites created under ICF-type laser conditions. Mitigation protocol acceptability criteria for damage re-initiation and growth, downstream intensification, and residual stress are discussed. In previous work, we found that a power ramp at the end of the protocol effectively minimizes the residual stress (<25 MPa) left in the substrate. However, the biggest difficulty in determining an acceptable protocol was balancing between low re-initiation and problematic downstream intensification. Typical growing surface damage sites mitigated with a candidate CO{sub 2} laser-based mitigation protocol all survived 351 nm, 5 ns damage testing to fluences >12.5 J/cm{sup 2}. The downstream intensification arising from the mitigated sites is evaluated, and all but one of the sites has 100% passing downstream damage expectation values. We demonstrate, for the first time, a successful non-evaporative 10.6 {micro}m CO{sub 2} laser mitigation protocol applicable to fused-silica optics used on fusion-class lasers like the National Ignition Facility (NIF).
Date: October 26, 2010
Creator: Adams, J. J.; Bolourchi, M.; Bude, J. D.; Guss, G. M.; Matthews, M. J. & Nostrand, M. C.
System: The UNT Digital Library
Semi-supervised prediction of protein subcellular localization using abstraction augmented Markov models (open access)

Semi-supervised prediction of protein subcellular localization using abstraction augmented Markov models

Article discussing the semi-supervised prediction of protein subcellular localization using abstraction augmented Markov models.
Date: October 26, 2010
Creator: Caragea, Cornelia; Caragea, Doina; Silvescu, Adrian & Honavar, Vasant
System: The UNT Digital Library
Solubility of Acetaminophen and Ibuprofen in the Mixtures of Polyethylene Glycol 200 or 400 with Ethanol and water and the Density of Solute-Free Mixed Solvents at 298.2 K (open access)

Solubility of Acetaminophen and Ibuprofen in the Mixtures of Polyethylene Glycol 200 or 400 with Ethanol and water and the Density of Solute-Free Mixed Solvents at 298.2 K

Article on the solubility of acetaminophen and ibuprofen in the mixtures of polyethylene glycol 200 or 400 with ethanol and water and the density of solute-free mixed solvents at 298.2 K.
Date: October 26, 2010
Creator: Jouyban, Abolghasem; Soltanpour, Shahla & Acree, William E. (William Eugene)
System: The UNT Digital Library
The Suitability of Sodium Peroxide Fusion for Production-Scale Plutonium Processing Operations (open access)

The Suitability of Sodium Peroxide Fusion for Production-Scale Plutonium Processing Operations

Sodium peroxide (Na{sub 2}O{sub 2}) fusion is a method that offers significant benefits to the processing of high-fired plutonium oxide (PuO{sub 2}) materials. Those benefits include reduction in dissolution cycle time, decrease in residual solids, and reduction of the potential for generation of a flammable gas mixture during dissolution. Implementation of Na{sub 2}O{sub 2} fusion may also increase the PuO{sub 2} throughput in the HB-Line dissolving lines. To fuse a material, Na{sub 2}O{sub 2} is mixed with the feed material in a crucible and heated to 600-700 C. For low-fired and high-fired PuO{sub 2}, Na{sub 2}O{sub 2} reacts with PuO{sub 2} to form a compound that readily dissolves in ambient-temperature nitric acid without the use of potassium fluoride. The Savannah River National Laboratory (SRNL) demonstrated the feasibility of Na{sub 2}O{sub 2} fusion and subsequent dissolution for the processing of high-fired PuO{sub 2} materials in HB-Line. Testing evaluated critical dissolution characteristics and defined preliminary process parameters. Based on experimental measurements, a dissolution cycle can be complete in less than one hour, compared to the current processing time of 6-10 hours for solution heating and dissolution. Final Pu concentrations of 30-35 g/L were produced without the formation of precipitates in the final …
Date: October 26, 2010
Creator: Pierce, R. & Edwards, T.
System: The UNT Digital Library
Temperature activated absorption during laser-induced damage: The evolution of laser-supported solid-state absorption fronts (open access)

Temperature activated absorption during laser-induced damage: The evolution of laser-supported solid-state absorption fronts

Previously we have shown that the size of laser induced damage sites in both KDP and SiO{sub 2} is largely governed by the duration of the laser pulse which creates them. Here we present a model based on experiment and simulation that accounts for this behavior. Specifically, we show that solid-state laser-supported absorption fronts are generated during a damage event and that these fronts propagate at constant velocities for laser intensities up to 4 GW/cm{sup 2}. It is the constant absorption front velocity that leads to the dependence of laser damage site size on pulse duration. We show that these absorption fronts are driven principally by the temperature-activated deep sub band-gap optical absorptivity, free electron transport, and thermal diffusion in defect-free silica for temperatures up to 15,000K and pressures < 15GPa. In addition to the practical application of selecting an optimal laser for pre-initiation of large aperture optics, this work serves as a platform for understanding general laser-matter interactions in dielectrics under a variety of conditions.
Date: October 26, 2010
Creator: Carr, C W; Bude, J D; Shen, N & Demange, P
System: The UNT Digital Library