Semaphore Solutions for General Mutual Exclusion Problems (open access)

Semaphore Solutions for General Mutual Exclusion Problems

Automatic generation of starvation-free semaphore solutions to general mutual exclusion problems is discussed. A reduction approach is introduced for recognizing edge-solvable problems, together with an O(N^2) algorithm for graph reduction, where N is the number of nodes. An algorithm for the automatic generation of starvation-free edge-solvable solutions is presented. The solutions are proved to be very efficient. For general problems, there are two ways to generate efficient solutions. One associates a semaphore with every node, the other with every edge. They are both better than the standard monitor—like solutions. Besides strong semaphores, solutions using weak semaphores, weaker semaphores and generalized semaphores are also considered. Basic properties of semaphore solutions are also discussed. Tools describing the dynamic behavior of parallel systems, as well as performance criteria for evaluating semaphore solutions are elaborated.
Date: August 1988
Creator: Yue, Kwok B. (Kwok Bun)
System: The UNT Digital Library
Computer Realization of Human Music Cognition (open access)

Computer Realization of Human Music Cognition

This study models the human process of music cognition on the digital computer. The definition of music cognition is derived from the work in music cognition done by the researchers Carol Krumhansl and Edward Kessler, and by Mari Jones, as well as from the music theories of Heinrich Schenker. The computer implementation functions in three stages. First, it translates a musical "performance" in the form of MIDI (Musical Instrument Digital Interface) messages into LISP structures. Second, the various parameters of the performance are examined separately a la Jones's joint accent structure, quantified according to psychological findings, and adjusted to a common scale. The findings of Krumhansl and Kessler are used to evaluate the consonance of each note with respect to the key of the piece and with respect to the immediately sounding harmony. This process yields a multidimensional set of points, each of which is a cognitive evaluation of a single musical event within the context of the piece of music within which it occurred. This set of points forms a metric space in multi-dimensional Euclidean space. The third phase of the analysis maps the set of points into a topology-preserving data structure for a Schenkerian-like middleground structural analysis. This …
Date: August 1988
Creator: Albright, Larry E. (Larry Eugene)
System: The UNT Digital Library