2 Matching Results

Results open in a new window/tab.

Experimental and Numerical Investigation of the Role of Initial Condition of the Dynamics of Rayleigh-Taylor Mixing (open access)

Experimental and Numerical Investigation of the Role of Initial Condition of the Dynamics of Rayleigh-Taylor Mixing

Experiments and direct numerical simulations have been performed to examine the effects of initial conditions on the dynamics of a Rayleigh-Taylor mixing layer. Experiments were performed on a water channel facility to quantify the interfacial and velocity perturbations initially present at the two-fluid interface in a small Atwood number mixing layer. The measurements have been parameterized for implementation in numerical simulations of the experiment, and two- and three-dimensional direct numerical simulations (DNS) of the experiment have been performed. It is shown that simulations implemented with initial velocity perturbations are required to match experimentally-measured statistics. Data acquired from both the experiment and numerical simulations are used to elucidate the role of initial conditions on the evolution of integral-scale, turbulence, and mixing statistics. Early-time turbulence and mixing statistics will be shown to be strongly dependent upon the early-time transition of the initial perturbation from a weakly- to a strongly-nonlinear flow.
Date: August 16, 2004
Creator: Mueschke, N
System: The UNT Digital Library
Rates and progenitors of type Ia supernovae (open access)

Rates and progenitors of type Ia supernovae

The remarkable uniformity of Type Ia supernovae has allowed astronomers to use them as distance indicators to measure the properties and expansion history of the Universe. However, Type Ia supernovae exhibit intrinsic variation in both their spectra and observed brightness. The brightness variations have been approximately corrected by various methods, but there remain intrinsic variations that limit the statistical power of current and future observations of distant supernovae for cosmological purposes. There may be systematic effects in this residual variation that evolve with redshift and thus limit the cosmological power of SN Ia luminosity-distance experiments. To reduce these systematic uncertainties, we need a deeper understanding of the observed variations in Type Ia supernovae. Toward this end, the Nearby Supernova Factory has been designed to discover hundreds of Type Ia supernovae in a systematic and automated fashion and study them in detail. This project will observe these supernovae spectrophotometrically to provide the homogeneous high-quality data set necessary to improve the understanding and calibration of these vital cosmological yardsticks. From 1998 to 2003, in collaboration with the Near-Earth Asteroid Tracking group at the Jet Propulsion Laboratory, a systematic and automated searching program was conceived and executed using the computing facilities at Lawrence …
Date: August 16, 2004
Creator: Wood-Vasey, William Michael
System: The UNT Digital Library