States

Month

Highly Stretchable Miniature Strain Sensor for Large Dynamic Strain Measurement (open access)

Highly Stretchable Miniature Strain Sensor for Large Dynamic Strain Measurement

This thesis aims to develop a new type of highly stretchable strain sensor to measure large deformation of a specimen subjected to dynamic loading. The sensor was based on the piezo-resistive response of carbon nanotube(CNT)/polydimethysiloxane (PDMS) composites thin films, some nickel particles were added into the sensor composite to improve the sensor performance. The piezo-resistive response of CNT composite gives high frequency response in strain measurement, while the ultra-soft PDMS matrix provides high flexibility and ductility for large strain measuring large strain (up to 26%) with an excellent linearity and a fast frequency response under quasi-static test, the delay time for high strain rate test is just 30 μs. This stretchable strain sensor is also able to exhibit much higher sensitivities, with a gauge factor of as high as 80, than conventional foil strain gauges.
Date: May 2016
Creator: Yao, Shulong
System: The UNT Digital Library
Biomass-Derived Activated Carbon Through Self-Activation Process (open access)

Biomass-Derived Activated Carbon Through Self-Activation Process

Self-activation is a process that takes advantage of the gases emitted from the pyrolysis process of biomass to activate the converted carbon. The pyrolytic gases from the biomass contain CO2 and H2O, which can be used as activating agents. As two common methods, both of physical activation using CO2 and chemical activation using ZnCl2 introduce additional gas (CO2) or chemical (ZnCl2), in which the CO2 emission from the activation process or the zinc compound removal by acid from the follow-up process will cause environmental concerns. In comparison with these conventional activation processes, the self-activation process could avoid the cost of activating agents and is more environmentally friendly, since the exhaust gases (CO and H2) can be used as fuel or feedstock for the further synthesis in methanol production. In this research, many types of biomass were successfully converted into activated carbon through the self-activation process. An activation model was developed to describe the changes of specific surface area and pore volume during the activation. The relationships between the activating temperature, dwelling time, yield, specific surface area, and specific pore volume were detailed investigated. The highest specific surface area and pore volume of the biomass-derived activated carbon through the self-activation process …
Date: May 2016
Creator: Xia, Changlei
System: The UNT Digital Library
A study of the impact of unconventional sources within a large urban area: evidence from spatio-temporal assessment of volatile organic compounds. (open access)

A study of the impact of unconventional sources within a large urban area: evidence from spatio-temporal assessment of volatile organic compounds.

Conventional sources of emissions have been a prime target for policymakers in designing pollution control strategies. However, the evolution of shale gas activities is a growing concern over the impact of unconventional sources on urban and regional air quality. Owing to the development of Barnett Shale production, the fast-growing Dallas-Fort Worth (DFW) metroplex has encountered both types of these emissions. Oil and gas activities result in emissions of ozone precursors, notably volatile organic compounds (VOC). The major objective of this study was to evaluate the spatio-temporal distribution of VOC in order to highlight the influence of unconventional emissions. The study utilized measurements from automated gas chromatography (AutoGC) monitors to analyze the patterns of the total non-methane organic compounds (TNMOC) and relative contributions from marker species of traffic versus oil and gas activities. In this study, data from 2001-2014 was obtained from the Texas Commission on Environmental Quality (TCEQ) for fifteen monitoring sites within the North Texas region. With over a thousand wells in a 10 mile radius, two of the rural sites measured twice as much TNMOC as compared to the urban site in Dallas. Source apportionment analysis was conducted using Positive Matrix Factorization (PMF) technique. The target site located …
Date: May 2016
Creator: Matin, Maleeha
System: The UNT Digital Library
Bioinspired & biocompatible coatings of poly(butylene adipate-co-terephthalate) and layer double hydroxide composites for corrosion resistance (open access)

Bioinspired & biocompatible coatings of poly(butylene adipate-co-terephthalate) and layer double hydroxide composites for corrosion resistance

Hierarchical arrangement of biological composites such as nacre and bone containing high filler (ceramic) content results in high strength and toughness of the natural material. In this study we mimic the design of layered bone microstructure and fabricate an optimal multifunctional bio-nanocomposite having strength, toughness and corrosion resistance. Poly (butylene adipate-co-terephthalate) (PBAT), a biodegradable polymer was used as a substrate material with the reinforcement of LDH (Layered double hydroxide) as a nanofiller in different concentrations to achieve enhancement in mechanical properties as well as processing related thermostability. Corrosion resistance was increased by mimicking a layered structured which incorporated a tortuous diffusion path.
Date: May 2016
Creator: Rizvi, Hussain R.
System: The UNT Digital Library
Investigation of the Effect of Particle Size and Particle Loading on Thermal Conductivity and Dielectric Strength of Thermoset Polymers (open access)

Investigation of the Effect of Particle Size and Particle Loading on Thermal Conductivity and Dielectric Strength of Thermoset Polymers

Semiconductor die attach materials for high voltage, high reliability analog devices require high thermal conductivity and retention of dielectric strength. A comparative study of effective thermal conductivity and dielectric strength of selected thermoset/ceramic composites was conducted to determine the effect of ceramic particle size and ceramic particle loading on thermoset polymers. The polymer chosen for this study is bismaleimide, a common aerospace material chosen for its strength and thermal stability. The reinforcing material chosen for this study is a ceramic, hexagonal boron nitride. Thermal conductivity and dielectric breakdown strength are measured in low and high concentrations of hexagonal boron nitride. Adhesive fracture toughness of the composite is evaluated on copper to determine the composite’s adhesive qualities. SEM imaging of composite cross-sections is used to visualize particle orientation within the matrix. Micro-indentation is used to measure mechanical properties of the composites which display increased mechanical performance in loading beyond the percolation threshold of the material. Thermal conductivity of the base polymer increases by a factor of 50 in 80%wt loading of 50µm hBN accompanied by a 10% increase in composite dielectric strength. A relationship between particle size and effective thermal conductivity is established through comparison of experimental data with an empirical …
Date: May 2016
Creator: Warner, Nathaniel A.
System: The UNT Digital Library
Ozone Pollution of Shale Gas Activities in North Texas (open access)

Ozone Pollution of Shale Gas Activities in North Texas

The effect of shale gas activities on ground-level ozone pollution in the Dallas-Fort Worth area is studied in detail here. Ozone is a highly reactive species with harmful effects on human and environment. Shale gas development, or fracking, involves activities such as hydraulic fracturing, drilling, fluid mixing, and trucks idling that are sources of nitrogen oxides (NOX) and volatile organic compounds (VOC), two of the most important precursors of ozone. In this study two independent approaches have been applied in evaluating the influences on ozone concentrations. In the first approach, the influence of meteorology were removed from ozone time series through the application of Kolmogorov-Zurbenko low-pass filter, logarithmic transformation, and subsequent multi-linear regression. Ozone measurement data were acquired from Texas Commission on Environmental Quality (TCEQ) monitoring stations for 14 years. The comparison between ozone trends in non-shale gas region and shale gas region shows increasing ozone trends at the monitoring stations in close proximity to the Barnett Shale activities. In the second approach, the CAMx photochemical model was used to assess the sensitivity of ozone to the NOX and VOC sources associated with shale oil and gas activities. Brute force method was applied on Barnett Shale and Haynesville Shale emission …
Date: May 2016
Creator: Ahmadi, Mahdi
System: The UNT Digital Library
Adhesion and Surface Energy Profiles of Large-area Atomic Layers of Two-dimensional MoS2 on Rigid Substrates by Facile Methods (open access)

Adhesion and Surface Energy Profiles of Large-area Atomic Layers of Two-dimensional MoS2 on Rigid Substrates by Facile Methods

Two-dimensional (2D) transition metal dichalcogenides (TMDs) show great potential for the future electronics, optoelectronics and energy applications. But, the studies unveiling their interactions with the host substrates are sparse and limits their practical use for real device applications. We report the facile nano-scratch method to determine the adhesion energy of the wafer scale MoS2 atomic layers attached to the SiO2/Si and sapphire substrates. The practical adhesion energy of monolayer MoS2 on the SiO2/Si substrate is 7.78 J/m2. The practical adhesion energy was found to be an increasing function of the MoS2 thickness. Unlike SiO2/Si substrates, MoS2 films grown on the sapphire possess higher bonding energy, which is attributed to the defect-free growth and less number of grain boundaries, as well as less stress and strain stored at the interface owing to the similarity of Thermal Expansion Coefficient (TEC) between MoS2 films and sapphire substrate. Furthermore, we calculated the surface free energy of 2D MoS2 by the facile contact angle measurements and Neumann model fitting. A surface free energy ~85.3 mJ/m2 in few layers thick MoS2 manifests the hydrophilic nature of 2D MoS2. The high surface energy of MoS2 helps explain the good bonding strength at MoS2/substrate interface. This simple adhesion …
Date: May 2016
Creator: Wu, Min
System: The UNT Digital Library
Feasibility of a New Technique to Determine Dynamic Tensile Behavior of Brittle Materials (open access)

Feasibility of a New Technique to Determine Dynamic Tensile Behavior of Brittle Materials

Dynamic tensile characterization of geo-materials is critical to the modeling and design of protective structures that are often made of concrete. One of the most commonly used techniques currently associated with this type of testing is performed with a Kolsky bar and is known as the spall technique. The validity of the data from the spall technique is highly debated because the necessary boundary conditions for the experiment are not satisfied. By using a technique called pulse shaping, a new “controlled” spall technique was developed to satisfy all boundary conditions so that the analyzed data may be useful in modeling and design. The results from this project were promising and show the potential to revolutionize the way Kolsky bar testing is performed.
Date: May 2016
Creator: Dean, Andrew W.
System: The UNT Digital Library
Field Validation of Zero Energy Lab Water-to-Water Ground Coupled Heat Pump Model (open access)

Field Validation of Zero Energy Lab Water-to-Water Ground Coupled Heat Pump Model

Heat pumps are a vital part of each building for their role in keeping the space conditioned for the occupant. This study focuses on developing a model for the ground-source heat pump at the Zero Energy lab at the University of North Texas, and finding the minimum data required for generating the model. The literature includes many models with different approaches to determine the performance of the heat pump. Each method has its pros and cons. In this research the equation-fit method was used to generate a model based on the data collected from the field. Two experiments were conducted for the cooling mode: the first one at the beginning of the season and the second one at the peak of the season to cover all the operation conditions. The same procedure was followed for the heating mode. The models generated based on the collected data were validated against the experiment data. The error of the models was within ±10%. The study showed that the error could be reduced by 20% to 42% when using the field data to generate the model instead of the manufacturer’s catalog data. Also it was found that the minimum period to generate the cooling …
Date: May 2016
Creator: Abdulameer, Saif
System: The UNT Digital Library
Performance Evaluation of UNT Apogee Stadium Wind Turbines (open access)

Performance Evaluation of UNT Apogee Stadium Wind Turbines

The following report chronicles the University of North Texas Wind Turbine Project at Apogee Stadium. The timeline of events will include the feasibility study conducted by and for the university, grant awards from the Texas State Energy Conservation Office to fund the project, and a three-year sample of real time performance data since installation. The purpose of this case study is to compare the energy generation estimates by various stakeholders to the measured energy generation using a new but uniform performance relationship. In order to optimize energy generation in wind turbine generator systems, the most common wind speeds measured at the site should also be the most efficient wind speeds at which the wind turbine can convert the kinetic energy in the wind into mechanical energy and ultimately electrical energy. The tool used to convey this relationship will be a figure plotting the wind speed profile against the efficiency curve of the wind turbine. Applying this relationship tool to the UNT Apogee Stadium wind turbines provided valuable results. The most common wind speeds at Apogee Stadium are not the most efficient wind speed for the turbine. Also, the most common wind speeds were near the lower limit of the wind …
Date: May 2016
Creator: McCary, William D., III
System: The UNT Digital Library