Development of large high current density superconducting solenoid magnets for use in high energy physics experiments. (open access)

Development of large high current density superconducting solenoid magnets for use in high energy physics experiments.

The development of a unique type of large superconducting solenoid magnet, characterized by very high current density windings and a two-phase helium tubular cooling system is described. The development of the magnet's conceptual design and the construction of two test solenoids are described. The successful test of the superconducting coil and its tubular cooling refrigeration system is presented. The safety, environmental and economic impacts of the test program on future developments in high energy physics are shown. Large solid angle particle detectors for colliding beam physics will analyze both charged and neutral particles. In many cases, these detectors will require neutral particles, such as gamma rays, to pass through the magnet coil with minimum interaction. The magnet coils must be as thin as possible. The use of superconducting windings allows one to minimize radiation thickness, while at the same time maximizing charged particle momentum resolution and saving substantial quantities of electrical energy. The results of the experimental measurements show that large high current density solenoid magnets can be made to operate at high stored energies. The superconducting magnet development described has a positive safety and environmental impact. The use of large high current density thin superconducting solenoids has been proposed …
Date: May 1, 1977
Creator: Green, M. A.
System: The UNT Digital Library
Space-Charge Electrostatic Precipitation (open access)

Space-Charge Electrostatic Precipitation

An improved electrostatic precipitator called a space charge precipitator was tested and studied. A space charge precipitator differs from a conventional model in that the fields necessary to move the particles from the gas to the collecting surfaces are provided by a cloud of charged innocuous drops, such as glycerine or water, rather than by a charged electrode system. The flow conditions, electrical equipment, and physical dimensions of the test precipitator are typical of industrial applications. Experiments using water fog at a velocity of 10 ft/sec and a residence time of 0.6 sec, for a system charged at 25 kV, show a removal of iron oxide particles of approximately 52 percent. Theoretical calculations, assuming 2 micron particles, predict a removal of 50 percent. The results with glycerine fog are comparable. Experiments at various flowrates for both water fog and glycerine fog show a trend of decreasing particle removal for increasing flowrate. An identical trend is predicted by the space charge theory. Electron micrographs verify that only particles smaller than two microns are present in the laboratory precipitator.
Date: May 1, 1977
Creator: Middleton, Charles Eugene
System: The UNT Digital Library
Measurements of the top - anti-top Production Cross Section at s**(1/2) = 1.96-TeV and Top Mass in the Dielectron Channel (open access)

Measurements of the top - anti-top Production Cross Section at s**(1/2) = 1.96-TeV and Top Mass in the Dielectron Channel

The first measurement of the top-antitop production cross section in proton-antiproton collisions at {radical}s = 1.96 TeV using 243 pb{sup -1} of data collected with the D0 detector at Fermilab is presented. In this analysis, only the dielectron final state is considered. Five events are observed, and 0.93 background events are expected. The measured cross section, after accounting for the expected branching ratio to the dielectron channel, is {sigma}{sub t{bar t}} = 14.9{sub -7.0}{sup +9.4}(stat){sub -1.8}{sup +2.5}(syst) {+-} 1.0 (lumi) pb, which agrees with the predicted cross section for top quarks with a mass of 175 GeV. In addition, a first-pass at a measurement of the top mass using the neutrino-weighting method is presented. This measurement is also performed in the dielectron channel using the five events observed in the cross section measurement.
Date: May 1, 2005
Creator: Kozminski, Joseph Francis
System: The UNT Digital Library
Characterizing the Material Properties of Polymer-Based Microelectrode Arrays for Retinal Prosthesis (open access)

Characterizing the Material Properties of Polymer-Based Microelectrode Arrays for Retinal Prosthesis

The Retinal Prosthesis project is a three year project conducted in part at the Lawrence Livermore National Laboratory and funded by the Department of Energy to create an epiretinal microelectrode array for stimulating retinal cells. The implant must be flexible to conform to the retina, robust to sustain handling during fabrication and implantation, and biocompatible to withstand physiological conditions within the eye. Using poly(dimethyl siloxane) (PDMS), LLNL aims to use microfabrication techniques to increase the number of electrodes and integrate electronics. After the initial designs were fabricated and tested in acute implantation, it became obvious that there was a need to characterize and understand the mechanical and electrical properties of these new structures. This knowledge would be imperative in gaining credibility for polymer microfabrication and optimizing the designs. Thin composite microfabricated devices are challenging to characterize because they are difficult to handle, and exhibit non-linear, viscoelastic, and anisotropic properties. The objective of this research is to device experiments and protocols, develop an analytical model to represent the composite behavior, design and fabricate test structures, and conduct experimental testing to determine the mechanical and electrical properties of PDMS-metal composites. Previous uniaxial stretch tests show an average of 7% strain before failure …
Date: May 10, 2003
Creator: Park, C S & Maghribi, M
System: The UNT Digital Library
High Transverse Momentum Direct Photon Production at Fermilab Fixed-Target Energies (open access)

High Transverse Momentum Direct Photon Production at Fermilab Fixed-Target Energies

This thesis describes a study of the production of high transverse momentum direct photons and {pi}{sup 0} mesons by proton beams at 530 and 800 GeV/c and {pi}{sup -} beams at 515 GeV/c incident on beryllium, copper, and liquid hydrogen targets. The data were collected by Fermilab experiment E706 during the 1990 and 1991-92 fixed target runs. The apparatus included a large, finely segmented lead and liquid argon electromagnetic calorimeter and a charged particle spectrometer featuring silicon strip detectors in the target region and proportional wire chambers and drift tubes downstream of a large aperture analysis magnet. The inclusive cross sections are presented as functions of transverse momentum and rapidity. The measurements are compared with next-to-leading order perturbative QCD calculations and to results from previous experiments.
Date: May 1, 2005
Creator: Apanasevich, Leonard
System: The UNT Digital Library
Object-oriented algorithmic laboratory for ordering sparse matrices (open access)

Object-oriented algorithmic laboratory for ordering sparse matrices

We focus on two known NP-hard problems that have applications in sparse matrix computations: the envelope/wavefront reduction problem and the fill reduction problem. Envelope/wavefront reducing orderings have a wide range of applications including profile and frontal solvers, incomplete factorization preconditioning, graph reordering for cache performance, gene sequencing, and spatial databases. Fill reducing orderings are generally limited to--but an inextricable part of--sparse matrix factorization. Our major contribution to this field is the design of new and improved heuristics for these NP-hard problems and their efficient implementation in a robust, cross-platform, object-oriented software package. In this body of research, we (1) examine current ordering algorithms, analyze their asymptotic complexity, and characterize their behavior in model problems, (2) introduce new and improved algorithms that address deficiencies found in previous heuristics, (3) implement an object-oriented library of these algorithms in a robust, modular fashion without significant loss of efficiency, and (4) extend our algorithms and software to address both generalized and constrained problems. We stress that the major contribution is the algorithms and the implementation; the whole being greater than the sum of its parts. The initial motivation for implementing our algorithms in object-oriented software was to manage the inherent complexity. During our research …
Date: May 1, 2000
Creator: Kumfert, G K
System: The UNT Digital Library
FY02 Engineering Technology Reports Volume 2: LDRD (open access)

FY02 Engineering Technology Reports Volume 2: LDRD

This report summarizes the science and technology research and development efforts in Lawrence Livermore National Laboratory's Engineering Directorate for FY2002, and exemplifies Engineering's 50-year history of developing the technologies needed to support the Laboratory's missions. Engineering has been a partner in every major program and project at the Laboratory throughout its existence and has prepared for this role with a skilled workforce and the technical resources developed through venues like the Laboratory Directed Research and Development Program (LDRD). This accomplishment is well summarized by Engineering's mission: ''To make programs succeed today and to ensure the vitality of the Laboratory tomorrow.'' Engineering's investment in new technologies is carried out through two programs, the ''Tech Base'' program (Volume I) and the LDRD program (Volume II). This report summarizes the LDRD portion of Engineering's Technology Program. LDRD is the vehicle for researching and developing those technologies and competencies that are cutting edge, or that require a significant level of research, or contain some unknown that needs to be fully understood. Tech Base is used to apply those technologies, or adapt them to a Laboratory need. The term commonly used for Tech Base projects is ''reduction to practice.'' Therefore, the LDRD report covered here …
Date: May 19, 2003
Creator: Minichino, C & Meeker, D
System: The UNT Digital Library
A Measurement of the Neutrino Neutral Current Pi0 Cross Section at MiniBooNE (open access)

A Measurement of the Neutrino Neutral Current Pi0 Cross Section at MiniBooNE

The MiniBooNE neutrino beam and detector at Fermilab are used to study the production of neutral current {pi}{sup 0} events. The cross sections for neutrino interactions with mineral oil (CH{sub 2}) are reported for resonantly produced and coherently produced single {pi}{sup 0} events. We measure a resonant single {pi}{sup 0} cross section of {sigma}({nu}{sub {mu}} N {pi}{sup 0}) = (0.0129 {+-} 0.0011(stat.) {+-} 0.0043(syst.)) x 10{sup -36} cm{sup 2}/CH{sub 2} at a mean neutrino energy of 1.26 GeV. We measure a coherent single {pi}{sup 0} cross section of {sigma}({nu}{sub {mu}} A {yields} {nu}{sub {mu}} A {pi}{sup 0}) = (0.00077 {+-} 0.00016 (stat.) {+-} 0.00036 (syst.)) x 10{sup -36} cm{sup 2}/CH{sub 2} at mean neutrino energy 1.12 GeV.
Date: May 1, 2005
Creator: Raaf, Jennifer Lynne & U., /Cincinnati
System: The UNT Digital Library
Search for first generation leptoquarks in electron + neutrino + dijet channel (open access)

Search for first generation leptoquarks in electron + neutrino + dijet channel

None
Date: May 1, 2004
Creator: Cothenet, Alexis
System: The UNT Digital Library
A Precision Measurement of the Top Quark Mass (open access)

A Precision Measurement of the Top Quark Mass

This dissertation describes the measurement of the top quark mass using events recorded during a {approx} 230 pb{sup -1} exposure of the D0 detector to proton-anti-proton (p{bar p}) collisions at a center of mass energy of 1.96 TeV. The Standard Model of particle physics predicts that the top quark will decay into a bottom quark and a W boson close to 100% of the time. The bottom quark will hadronize (bind with another quark) and produce a jet of hadronic particles. The W bosons can decay either into a charged lepton and a neutrino or a pair of quarks. this dissertation focuses on the top quark (t{bar t}) events in which one W decays hadronically and the other decays leptonically. Two methods of identifying t{bar t} events from the large number of events produced are used. The first is based on the unique topology of the final state particles of a heavy particle. By using the topological information of the event, the t{bar t} events can be efficiently extracted from the background. The second method relies on the identification of the remnants of the long lived bottom quarks that are expected to be produced in the decay of almost every …
Date: May 1, 2005
Creator: Black, Kevin Matthew & U., /Boston
System: The UNT Digital Library
Aerosol Property Comparison Within and Above the ABL at the ARM Program SGP Site (open access)

Aerosol Property Comparison Within and Above the ABL at the ARM Program SGP Site

This thesis determines what, if any, measurements of aerosol properties made at the Earth surface are representative of those within the entire air column. Data from the Atmospheric Radiation Measurement site at the Southern Great Plains, the only location in the world where ground-based and in situ airborne measurements are routinely made. Flight legs during the one-year period from March 2000 were categorized as either within or above the atmospheric boundary layer (ABL) by use of an objective mixing height determination technique. Correlations between aerosol properties measured at the surface and those within and above the ABL were computed. Aerosol extensive and intensive properties measured at the surface were found representative of values within the ABL, but not of within the free atmosphere.
Date: May 1, 2002
Creator: Delle Monache, L
System: The UNT Digital Library
Temperature history and microstructure of alumina (open access)

Temperature history and microstructure of alumina

A simple process for the attainment of fully dense and improved microstructure for Al{sub 2}O{sub 3} ceramics has been developed. Pure, narrow size distribution, submicron powder is used. Homogenization heat treatment of Al{sub 2}O{sub 3} powder compacts at 800{degree}C for 50 hours produces more uniform pore structure and higher green strength. Pore size distribution becomes narrower. Near fully dense, fine-grained (< 1.2{mu}m) and uniform grain size-distribution, undoped Al{sub 2}O{sub 3} ceramics can be produced using a high quality powder, a high-pressure cold isostatic forming method, and a two-step sintering technique. Improvements in the microstructure of Al{sub 2}O{sub 3} ceramics homogenized at 800{degree}C/50 h include a smaller pore size and a more uniform pore size distribution. Prevention of differential densification in the early stages and delay of pore channel closure to the later stages of sintering are believed to be the primary mechanisms for the microstructure improvement in two-step sintering. Two-step sintering is an alternate way to improve the microstructure of Al{sub 2}O{sub 3} ceramics compared to fast firing or MgO doping. When a homogenization heat treatment and the fast firing are combined, the final density is higher than from fast firing alone. However, the two-step sintering technique is simple and …
Date: May 1, 1992
Creator: Lin, Jiang Tsair
System: The UNT Digital Library
An analysis of multiple particle settling for LMR backup shutdown systems (open access)

An analysis of multiple particle settling for LMR backup shutdown systems

Backup shutdown systems proposed for future LMRs may employ discreet absorber particles to provide the negative reactivity insertion. When actuated, these systems release a dense packing of particles from an out-of-core region to settle into an in-core region. The multiple particle settling behavior is analyzed by the method of continuity waves. This method provides predictions of the dynamic response of the system including the average particle velocity and volume fraction of particles vs. time. Although hindered settling problems have been previously analyzed using continuity wave theory, this application represents an extension of the theory to conditions of unrestrained settling. Typical cases are analyzed and numerical results are calculated based on a semi-empirical drift-flux model. For 1/4-inch diameter boron-carbide particles in hot liquid sodium, the unrestrained settling problem assumes a steady-state solution when the average volume fraction of particles is 0.295 and the average particle velocity is 26.0 cm/s.
Date: May 1, 1992
Creator: Brock, R. W.
System: The UNT Digital Library
Reflective masks for extreme ultraviolet lithography (open access)

Reflective masks for extreme ultraviolet lithography

Extreme ultraviolet lithographic masks are made by patterning multilayer reflective coatings with high normal incidence reflectivity. Masks can be patterned by depositing a patterned absorber layer above the coating or by etching the pattern directly into the coating itself. Electromagnetic simulations showed that absorber-overlayer masks have superior imaging characteristics over etched masks (less sensitive to incident angles and pattern profiles). In an EUVL absorber overlayer mask, defects can occur in the mask substrate, reflective coating, and absorber pattern. Electromagnetic simulations showed that substrate defects cause the most severe image degradation. A printability study of substrate defects for absorber overlayer masks showed that printability of 25 nm high substrate defects are comparable to defects in optical lithography. Simulations also indicated that the manner in which the defects are covered by multilayer reflective coatings can affect printability. Coverage profiles that result in large lateral spreading of defect geometries amplify the printability of the defects by increasing their effective sizes. Coverage profiles of Mo/Si coatings deposited above defects were studied by atomic force microscopy and TEM. Results showed that lateral spread of defect geometry is proportional to height. Undercut at defect also increases the lateral spread. Reductions in defect heights were observed for …
Date: May 1, 1994
Creator: Nguyen, Khanh Bao
System: The UNT Digital Library
Focus on NIF May 2001 (open access)

Focus on NIF May 2001

The National Ignition Facility, a stadium-size, 192-beam laser, is an essential tool for maintaining the safety and reliability of our nuclear weapons, harnessing fusion energy for future generations, and unlocking the origins of the universe. In the FY2001 Energy and Water Appropriations Act (FPN00-48), Congress appropriated $199.1 million for the continued construction of NIF. Immediately, $130 million became available. After March 31, 2001, $69.1 million was to be made available only after Department of Energy certification to Congress regarding six specific points: (1) recommend an appropriate path forward for the project; (2) certify that all established project and scientific milestones are on schedule and cost; (3) conduct 1st and 2nd quarter project reviews in FY01 and determine the project is on schedule and cost; (4) study alternatives to a 192-beam ignition facility for the stockpile stewardship program (SSP); (5) implement an integrated cost-schedule earned-value project control system; and (6) create a five-year budget plan for the SSP.
Date: May 1, 2001
Creator: Warner, B
System: The UNT Digital Library
Reaction dynamics and photochemistry of divalent systems (open access)

Reaction dynamics and photochemistry of divalent systems

Results are presented of molecular beam studies of bimolecular and unimolecular reactions of Ba. Chapter 1 discusses the reaction Ba + NO{sub 2}. Formation of the dominant BaO({sup 1}{Sigma}) + NO products resulted primarily from decay of long-lived Ba{sup +}NO{sub 2}{sup {minus}} collision complexes. Secondary mechanisms led to formation of forward scattered, internally excited BaO, and BaNO + O. D{sub o}(Ba-NO) = 65{plus_minus}20 kcal/mol. Reactions of ground state and electronically excited Ba with water and alcohols are examined in Chapter 2. Reaction of Ba({sup 1}S) + H{sup 2}O led to BaO + H{sub 2}, whereas excited state Ba({sup 1}D) + H{sub 2}O reacted to form BaOH + H. Collisions between Ba and CH{sub 3}OH led to BaOCH{sub 3} + H. Radical channels involve H-atom migration and are promoted by excitation of the incident Ba atom. In Chapter 3, reactions of Ba({sup 1}S) with ClO{sub 2}2 and O{sub 3} are discussed. Again, direct and complex mechanisms were observed. Formation of BaCl + O{sub 2} from decomposition of Ba{sup +}ClO{sub 2}{sup {minus}} accounted for 10% of total reaction crass section. Although Ba + O{sub 3} {yields} BaO + 0{sub 2} occurs primarily by direct reaction mechanisms, the secondary channel Ba + 0{sub …
Date: May 1, 1992
Creator: Davis, H. F.
System: The UNT Digital Library
Comparison of Aerosol Properties Within and Above the ABL at the ARM Program's SGP Site (open access)

Comparison of Aerosol Properties Within and Above the ABL at the ARM Program's SGP Site

The goal of this thesis is to determine under what conditions, if any, measurements of aerosol properties made at the Earth's surface are representative of aerosol properties within the column of air above the surface. This thesis will use data from the Atmospheric Radiation Measurement (ARM) site at the Southern Great Plains (SGP) which is the only location in the world where ground-based and in situ airborne measurements are made on a routine basis. All flight legs in the one-year period from March 2000-March 2001 were categorized as either within or above the atmospheric boundary layer using an objective mixing height determination technique. The correlations between the aerosol properties measured at the surface and the measured within and above the ABL were then computed. The conclusion of this comparison is that the aerosol extensive and intensive properties measured at the surface are representative of values within the ABL, but not within the free atmosphere.
Date: May 1, 2002
Creator: Delle Monache, L
System: The UNT Digital Library
Magnetization and magnetostriction in highly magnetostrictive materials (open access)

Magnetization and magnetostriction in highly magnetostrictive materials

The majority of this research has been in developing a model to describe the magnetostrictive properties of Terfenol-D, Tb{sub 1{minus}x}Dy{sub x}Fe{sub y} (x = 0.7-0.75 and y = 1.8--2.0), a rare earth-iron alloy which displays much promise for use in device applications. In the first chapter an introduction is given to the phenomena of magnetization and magnetostriction. The magnetic processes responsible for the observed magnetic properties of materials are explained. An overview is presented of the magnetic properties of rare earths, and more specifically the magnetic properties of Terfenol-D. In the second chapter, experimental results are presented on three composition of Tb{sub 1{minus}x}Dy{sub x}Fe{sub y} with x = 0.7, y= 1.9, 1.95, and x= 0.73, y= 1.95. The data were taken for various levels of prestress to show the effects of composition and microstructure on the magnetic and magnetostrictive properties of Terfenol-D. In the third chapter, a theoretical model is developed based on the rotation of magnetic domains. The model is used to explain the magnetic and magnetostrictive properties of Terfenol-D, including the observed negative strictions and large change in strain. The fourth chapter goes on to examine the magnetic properties of Terfenol-D along different crystallographic orientations. In the fifth …
Date: May 26, 1993
Creator: Thoelke, J. B.
System: The UNT Digital Library
Dynamic NMR studies of restricted arene rotation in the chromiu tricarbonyl thiophene and selenophene complexes (open access)

Dynamic NMR studies of restricted arene rotation in the chromiu tricarbonyl thiophene and selenophene complexes

This thesis contains the results of organometallic studies of thiophene and selenophene coordination in transition metal complexes. Chromium tricarbonyl complexes of thiophene, selenophene, and their alkyl-substituted derivatives were prepared and variable-temperature {sup 13}C NMR spectra of these complexes were recorded in dimethyl ether. Bandshape analyses of these spectra yielded activation parameters for restricted rotation of the thiophene and selenophene ligands in these complexes. Extended Hueckel molecular orbital calculations (EHMO) of the free thiophene and selenophene ligands and selected chromium tricarbonyl thiophene complexes were performed to better explain the activation barriers of these complexes. The structure of Cr(CO){sub 3}({eta}{sup 5}-2,5-dimethylthiophene) was established by a single crystal X-ray diffraction study.
Date: May 27, 1994
Creator: Sanger, M. J.
System: The UNT Digital Library
The design and performance of a twenty barrel hydrogen pellet injector for Alcator C-Mod (open access)

The design and performance of a twenty barrel hydrogen pellet injector for Alcator C-Mod

A twenty barrel hydrogen pellet injector has been designed, built and tested both in the laboratory and on the Alcator C-Mod Tokamak at MIT. The injector functions by firing pellets of frozen hydrogen or deuterium deep into the plasma discharge for the purpose of fueling the plasma, modifying the density profile and increasing the global energy confinement time. The design goals of the injector are: (1) Operational flexibility, (2) High reliability, (3) Remote operation with minimal maintenance. These requirements have lead to a single stage, pipe gun design with twenty barrels. Pellets are formed by in- situ condensation of the fuel gas, thus avoiding moving parts at cryogenic temperatures. The injector is the first to dispense with the need for cryogenic fluids and instead uses a closed cycle refrigerator to cool the thermal system components. The twenty barrels of the injector produce pellets of four different size groups and allow for a high degree of flexibility in fueling experiments. Operation of the injector is under PLC control allowing for remote operation, interlocked safety features and automated pellet manufacturing. The injector has been extrusively tested and shown to produce pellets reliably with velocities up to 1400 m/sec. During the period from …
Date: May 1, 1994
Creator: Urbahn, J. A.
System: The UNT Digital Library
Photodissociation and photoionization of organosulfur radicals (open access)

Photodissociation and photoionization of organosulfur radicals

The dynamics of S({sup 3}P{sub 2,1,0}, {sup 1}D{sub 2}) production from the 193 nm photodissociation of CH{sub 3}SCH{sub 3}, H{sub 2}S and CH{sub 3}SH have been studied using 2 + 1 resonance-enhanced multiphoton ionization (REMPI) techniques. The 193 nm photodissociation cross sections for the formation of S from CH{sub 3}S and HS initially prepared in the photodissociation of CH{sub 3}SCH{sub 3} and H{sub 2}S are estimated to be 1 {times} 10{sup {minus}18} and 1.1 {times} 10{sup {minus}18} cm{sup 2}, respectively. The dominant product from CH{sub 3}S is S({sup 1}D), while that from SH is S({sup 3}P). Possible potential energy surfaces involved in the 193 nm photodissociation of CH{sub 3}S({tilde X}) and SH(X) have been also examined. Threshold photoelectron (PE) spectra for SH and CH{sub 3}S formed in the ultraviolet photodissociation of H{sub 2}S and CH{sub 3}SH, respectively, have been measured using the nonresonant two-photon pulsed field ionization (N2P-PFI) technique. The rotationally resolved N2P-PFI-PE spectrum obtained for SH indicates that photoionization dynamics favors the rotational angular momentum change {Delta}N < 0 with the {Delta}N value up to {minus}3, an observation similar to that found in the PFI-PE spectra of OH (OD) and NO. The ionization energies for SH(X{sup 2}{product}{sub 3,2}) and …
Date: May 27, 1994
Creator: Hsu, Chia-Wei
System: The UNT Digital Library
Metallization and charge-transfer gap closure of transition-metal iodides under pressure (open access)

Metallization and charge-transfer gap closure of transition-metal iodides under pressure

It is shown with resistivity and near-IR absorption measurements that NiI{sub 2}, CoI{sub 2}, and FeI{sub 2} metallize under pressure by closure of the charge-transfer energy gap at pressures of 17, 10, and 23 GPa, respectively, which is close to the antiferromagnetic-diamagnetic transition in NiI{sub 2} and CoI{sub 2}. Thus, the magnetic transitions probably are caused by the metallization; in NiI{sub 2} and CoI{sub 2}, the insulator-metal transitions are first order. Moessbauer and XRD data were also collected. Figs, 46 refs.
Date: May 1, 1993
Creator: Chen, A. Li-Chung
System: The UNT Digital Library
The effect of composition on the mechanism of continuous recrystallization and superplastic response of aluminum-scandium alloys (open access)

The effect of composition on the mechanism of continuous recrystallization and superplastic response of aluminum-scandium alloys

The continuous recrystallization (CRX) appears to be fundamental in Al-Sc because it occurs irrespective of solute composition. It appears to be due to a combination of subgrain coalescence at low strains and incorporation of additional dislocations generated during grain boundary sliding at higher strains when the misorientation has increased sufficiently. Alloying additives such as Mg, Li are more important with respect to deformation after CRX is completed. Mg, and to a lesser extent Li, affect the max m-values (strain-rate sensitivities) in Al-Sc by changing the melting points (mp). Max m- values correlate inversely with mp so that the alloy with the greatest Mg had the highest m-values and lowest mp; the stress is raised at which power-law creep and breakdown occurs. The power-law breakdonw at much lower stresses in Al-0.5Sc and Al-1.2Li-0.5Sc causes the m-value to decrease more rapidly with strain rate. Al alloys for commercial superplastic applications should contain elements that raise the power-law strength so that the m-values are maximized while preserving the post-formed mechanical properties. Refs, figs, tabs.
Date: May 1, 1993
Creator: Bradley, E. L. III
System: The UNT Digital Library
Nucleation and growth in electrodeposition of thin copper films on pyrolytic graphite (open access)

Nucleation and growth in electrodeposition of thin copper films on pyrolytic graphite

Electrodeposition of Cu on graphite electrodes was studied, with emphasis on nucleation. Various ex-situ and in-situ methods were investigated for determining the number density of nuclei. Two direct methods were studied (scanning electron microscopy and scanning tunneling microscopy); indirect determinations included Raman spectroscopy and analysis of potentiostatic current transients. Though some of the techniques correctly predicted the nucleation densities under special conditions, SEM was the most reliable tool. The large scatter in the data necessitated steps to minimize this effect. To electrodeposit Cu on graphite, a nucleation overpotential of 250 mV was measured with cyclic voltammetry; such a large overpotential does not occur on a Pt or on a Cu-covered graphite electrode. The deposition potential is the dominant parameter governing nucleation density. There is a sharp increase in the nucleation density with applied potential. Cu can be deposited on highly oriented pyrolytic graphite only between the nucleation overpotential and the hydrogen evolution potential. To increase the Cu nucleation density, while avoiding excessive H evolution, a double pulse potential technique was used; nucleation densities on the order of 10{sup 10} nuclei/cm{sup 2} were achieved. The use of inhibitors (PVA, benzotriazole) was also investigated. Deposition on conducting polymer electrodes was also studied; …
Date: May 1, 1992
Creator: Kinaci, F. S. & Muller, R. H.
System: The UNT Digital Library