CAREER: Manufacturing of Mechanically Stable Nanoporous Ceramic Structures Via Selective Infiltration of Polymer Templates (open access)

CAREER: Manufacturing of Mechanically Stable Nanoporous Ceramic Structures Via Selective Infiltration of Polymer Templates

Data management plan for the grant, "CAREER: Manufacturing of Mechanically Stable Nanoporous Ceramic Structures Via Selective Infiltration of Polymer Templates." This Faculty Early Career Development (CAREER) grant from the National Science Foundation supports fundamental research to elucidate a new strategy of manufacturing nanoporous ceramic structures with controllable structure and composition and programmable mechanical stability. The specific goal of this research is to discover processing-structure-property relationships in ceramic coatings and heterostructures by providing fundamental insights on the mechanism of liquid phase swelling-based infiltration of spin-coated polymer templates with inorganic precursors and defining the rules that control the resulting structure and, thus, access to various materials surfaces and interfaces.
Date: 2021-03-01/2026-02-28
Creator: Berman, Diana
System: The UNT Digital Library
Research Experiences for Undergraduates Site: Interdisciplinary Research Experience on Accelerated Deep Learning through A Hardware-Software Collaborative Approach (open access)

Research Experiences for Undergraduates Site: Interdisciplinary Research Experience on Accelerated Deep Learning through A Hardware-Software Collaborative Approach

Data management plan for the grant, "REU Site: Interdisciplinary Research Experience on Accelerated Deep Learning through A Hardware-Software Collaborative Approach." This Research Experiences for Undergraduates (REU) Site Program at the University of North Texas will enhance the knowledge and research skills of a diverse cohort of undergraduate students through empowering, innovative, and interdisciplinary research experiences in developing Deep Learning applications and systems. The program aims to 1) expose undergraduate students to real-world and cutting-edge research focused on accelerated deep learning through combined hardware and software development; 2) encourage more undergraduate students to continue their academic careers and seek graduate degrees in computer science, computer engineering, and related disciplines; 3) develop research skills and improve communication and collaborative skills in undergraduate students.
Date: 2021-03-01/2024-02-29
Creator: Zhao, Hui & Albert, Mark
System: The UNT Digital Library