Comment on"Air Emissions Due to Wind and Solar Power" and Supporting Information (open access)

Comment on"Air Emissions Due to Wind and Solar Power" and Supporting Information

Katzenstein and Apt investigate the important question of pollution emission reduction benefits from variable generation resources such as wind and solar. Their methodology, which couples an individual variable generator to a dedicated gas plant to produce a flat block of power is, however, inappropriate. For CO{sub 2}, the authors conclude that variable generators 'achieve {approx} 80% of the emission reductions expected if the power fluctuations caused no additional emissions.' They find even lower NO{sub x} emission reduction benefits with steam-injected gas turbines and a 2-4 times net increase in NO{sub x} emissions for systems with dry NO{sub x} control unless the ratio of energy from natural gas to variable plants is greater than 2:1. A more appropriate methodology, however, would find a significantly lower degradation of the emissions benefit than suggested by Katzenstein and Apt. As has been known for many years, models of large power system operations must take into account variable demand and the unit commitment and economic dispatch functions that are practiced every day by system operators. It is also well-known that every change in wind or solar power output does not need to be countered by an equal and opposite change in a dispatchable resource. The …
Date: March 18, 2009
Creator: Mills, Andrew D.; Wiser, Ryan H.; Milligan, Michael & O'Malley, Mark
System: The UNT Digital Library
MASS MEASUREMENT UNCERTAINTY FOR PLUTONIUM ALIQUOTS ASSAYED BY CONTROLLED-POTENTIAL COULOMETRY (open access)

MASS MEASUREMENT UNCERTAINTY FOR PLUTONIUM ALIQUOTS ASSAYED BY CONTROLLED-POTENTIAL COULOMETRY

Minimizing plutonium measurement uncertainty is essential to nuclear material control and international safeguards. In 2005, the International Organization for Standardization (ISO) published ISO 12183 'Controlled-potential coulometric assay of plutonium', 2nd edition. ISO 12183:2005 recommends a target of {+-}0.01% for the mass of original sample in the aliquot because it is a critical assay variable. Mass measurements in radiological containment were evaluated and uncertainties estimated. The uncertainty estimate for the mass measurement also includes uncertainty in correcting for buoyancy effects from air acting as a fluid and from decreased pressure of heated air from the specific heat of the plutonium isotopes.
Date: March 18, 2009
Creator: Holland, M. & Cordaro, J.
System: The UNT Digital Library
Catalyzed Water Oxidation by Solar Irradiation of Band-Gap-Narrowed Semiconductors (Part 1. Overview). (open access)

Catalyzed Water Oxidation by Solar Irradiation of Band-Gap-Narrowed Semiconductors (Part 1. Overview).

The objectives of this report are: (1) Investigate the catalysis of water oxidation by cobalt and manganese hydrous oxides immobilized on titania or silica nanoparticles, and dinuclear metal complexes with quinonoid ligands in order to develop a better understanding of the critical water oxidation chemistry, and rationally search for improved catalysts. (2) Optimize the light-harvesting and charge-separation abilities of stable semiconductors including both a focused effort to improve the best existing materials by investigating their structural and electronic properties using a full suite of characterization tools, and a parallel effort to discover and characterize new materials. (3) Combine these elements to examine the function of oxidation catalysts on Band-Gap-Narrowed Semiconductor (BGNSC) surfaces and elucidate the core scientific challenges to the efficient coupling of the materials functions.
Date: March 18, 2008
Creator: Fujita, E.; Khalifah, P.; Lymar, S.; Muckerman, J. T. & Rodgriguez, J.
System: The UNT Digital Library
Catalyzed Water Oxidation by Solar Irradiation of Band-Gap-Narrowed Semiconductors (Part 2. Overview). (open access)

Catalyzed Water Oxidation by Solar Irradiation of Band-Gap-Narrowed Semiconductors (Part 2. Overview).

The objectives of this report are: (1) Investigate the catalysis of water oxidation by cobalt and manganese hydrous oxides immobilized on titania or silica nanoparticles, and dinuclear metal complexes with quinonoid ligands in order to develop a better understanding of the critical water oxidation chemistry, and rationally search for improved catalysts. (2) Optimize the light-harvesting and charge-separation abilities of stable semiconductors including both a focused effort to improve the best existing materials by investigating their structural and electronic properties using a full suite of characterization tools, and a parallel effort to discover and characterize new materials. (3) Combine these elements to examine the function of oxidation catalysts on Band-Gap-Narrowed Semiconductor (BGNSC) surfaces and elucidate the core scientific challenges to the efficient coupling of the materials functions.
Date: March 18, 2008
Creator: Fujita, E.; Khalifah, P.; Lymar, S.; Muckerman, J. T. & Rodriguez, J.
System: The UNT Digital Library
Injection Related Background due to the Transverse Feedback (open access)

Injection Related Background due to the Transverse Feedback

The background in the BaBar detector is especially high during injection, when most components are actually having reduced voltages. The situation is worse for the beam in High Energy Ring (HER) when the LER beam is present. It was found that the transverse feedback system plays an important role when stacking more charge on top of existing bunches. Lowering the feedback gain helped and it was realized later that the best scenario would be to gate off the feedback for only the one bunch, which got additional charge injected into it. The explanation is that the blown-up, but centered, original HER bunch plus the small injected off-axis bunch (each with half the charge) would stay in the ring if not touched, but the feedback system sees half the offset and wants to correct it, therefore disturbing and scraping the blown-up part.
Date: March 18, 2008
Creator: Decker, F. J.; Akre, R.; Fisher, A.; Iverson, R. & Weaver, M.
System: The UNT Digital Library
Pulse Length Control in an X-Ray FEL by Using Wakefields (open access)

Pulse Length Control in an X-Ray FEL by Using Wakefields

For the users of the high-brightness radiation sources of free-electron lasers it is desirable to reduce the FEL pulse length to 10 fs and below for time-resolved pump and probe experiments. Although it can be achieved by conventional compression methods for the electron beam or the chirped FEL pulse, the technical realization is demanding. In this presentation we study the impact of longitudinal wakefields in the undulator and how their properties can be used to reduced the amplifying part of the bunch to the desired length. Methods of actively controlling the wakefields are presented.
Date: March 18, 2008
Creator: Reiche, S.; Pellegrini, Claudio; Emma, P. & /SLAC, /UCLA
System: The UNT Digital Library
Structure and Phase Transformations in Pu Alloys (open access)

Structure and Phase Transformations in Pu Alloys

None
Date: March 18, 2008
Creator: Schwartz, A. J.; Massalski, T. B.; Cynn, H.; Evans, W. J.; Farber, D. L.; Wall, M. A. et al.
System: The UNT Digital Library
Suppression of Type-I ELMs Using a Single Toroidal Row of Magnetic Field Perturbation Coils in DIII-D (open access)

Suppression of Type-I ELMs Using a Single Toroidal Row of Magnetic Field Perturbation Coils in DIII-D

None
Date: March 18, 2008
Creator: Fenstermacher, M. E.; Evans, T. E.; Osborne, T. H.; Schaffer, M. J.; deGrassie, J. S.; Gohil, P. et al.
System: The UNT Digital Library
TRANSITION STATE FOR THE GAS-PHASE REACTION OF URANIUM HEXAFLUORIDE WITH WATER (open access)

TRANSITION STATE FOR THE GAS-PHASE REACTION OF URANIUM HEXAFLUORIDE WITH WATER

Density Functional Theory and small-core, relativistic pseudopotentials were used to look for symmetric and asymmetric transitions states of the gas-phase hydrolysis reaction of uranium hexafluoride, UF{sub 6}, with water. At the B3LYP/6-31G(d,p)/SDD level, an asymmetric transition state leading to the formation of a uranium hydroxyl fluoride, U(OH)F{sub 5}, and hydrogen fluoride was found with an energy barrier of +77.3 kJ/mol and an enthalpy of reaction of +63.0 kJ/mol (both including zero-point energy corrections). Addition of diffuse functions to all atoms except uranium led to only minor changes in the structure and relative energies of the reacting complex and transition state. However, a significant change in the product complex structure was found, significantly reducing the enthalpy of reaction to +31.9 kJ/mol. Similar structures and values were found for PBE0 and MP2 calculations with this larger basis set, supporting the B3LYP results. No symmetric transition state leading to the direct formation of uranium oxide tetrafluoride, UOF{sub 4}, was found, indicating that the reaction under ambient conditions likely includes several more steps than the mechanisms commonly mentioned. The transition state presented here appears to be the first published transition state for the important gas-phase reaction of UF{sub 6} with water.
Date: March 18, 2008
Creator: Garrison, S & James Becnel, J
System: The UNT Digital Library
THE USE OF VAPOR EXTRACTION SYSTEM AND ITS SUBSEQUENT REDUCTION OF WORKER EXPOSURE TO CARBON TETRACHLORIDE DURING RETRIEVAL OF HANFORDS LEGACY WASTE (open access)

THE USE OF VAPOR EXTRACTION SYSTEM AND ITS SUBSEQUENT REDUCTION OF WORKER EXPOSURE TO CARBON TETRACHLORIDE DURING RETRIEVAL OF HANFORDS LEGACY WASTE

The Hanford Site is a decommissioned nuclear productions complex located in south eastern Washington and is operated by the Department of Energy (DOE). From 1955 to 1973, carbon tetrachloride (CCl{sub 4}), used in mixtures with other organic compounds, was used to recover plutonium from aqueous streams at Z Plant located on the Hanford Site. The aqueous and organic liquid waste that remained at the end of this process was discharged to soil columns in waste cribs located near Z Plant. Included in this waste slurry along with CCl{sub 4} were tributyl phosphate, dibutyl butyl phosphate, and lard oil. (Truex et al., 2001). In the mid 1980's, CCl{sub 4} was found in the unconfined aquifer below the 200 West Area and subsequent ground water monitoring indicated that the plume was widespread and that the concentrations were increasing. It has been estimated that approximately 750,000 kg (826.7 tons) of CCl{sub 4} was discharged to the soil from 1955 to 1973. (Truex et al., 2001). With initial concentration readings of approximately 30,000 parts per million by volume (ppmv) in one well field alone, soil vapor extraction began in 1992 in an effort to remove the CCl{sub 4} from the soil. (Rohay, 1999). Since …
Date: March 18, 2008
Creator: DA, PITTS
System: The UNT Digital Library
QCD THERMODYNAMICS WITH ALMOST REALISTIC QUARK MASSES. (open access)

QCD THERMODYNAMICS WITH ALMOST REALISTIC QUARK MASSES.

None
Date: March 18, 2006
Creator: SCHMIDT, C.
System: The UNT Digital Library
The Ability of MM5 to Simulate Ice Clouds: Systematic Comparison between Simulated and Measured Fluxes and Lidar/Radar Profiles at SIRTA Atmospheric Observatory (open access)

The Ability of MM5 to Simulate Ice Clouds: Systematic Comparison between Simulated and Measured Fluxes and Lidar/Radar Profiles at SIRTA Atmospheric Observatory

Ice clouds play a major role in the radiative energy budget of the Earth-atmosphere system (Liou 1986). Their radiative effect is governed primarily by the equilibrium between their albedo and greenhouse effects. Both macrophysical and microphysical properties of ice clouds regulate this equilibrium. For quantifying the effect of these clouds onto climate and weather systems, they must be properly characterized in atmospheric models. In this paper we use remote-sensing measurements from the SIRTA ground based atmospheric observatory (Site Instrumental de Recherche par Teledetection Atmospherique, http://sirta.lmd.polytechnique.fr). Lidar and radar observations taken over 18 months are used, in order to gain statistical confidence in the model evaluation. Along this period of time, 62 days are selected for study because they contain parts of ice clouds. We use the ''model to observations'' approach by simulating lidar and radar signals from MM5 outputs. Other more classical variables such as shortwave and longwave radiative fluxes are also used. Four microphysical schemes, among which that proposed by Reisner et al. (1998) with original or modified parameterizations of particle terminal fall velocities (Zurovac-Jevtic and Zhang 2003, Heymsfield and Donner 1990), and the simplified Dudhia (1989) scheme are evaluated in this study.
Date: March 18, 2005
Creator: Chiriaco, M.; Vautard, R.; Chepfer, H.; Haeffelin, M.; Wanherdrick, Y.; Morille, Y. et al.
System: The UNT Digital Library
A BAC-based physical map of the Drosophila buzzatii genome (open access)

A BAC-based physical map of the Drosophila buzzatii genome

Large-insert genomic libraries facilitate cloning of large genomic regions, allow the construction of clone-based physical maps and provide useful resources for sequencing entire genomes. Drosophilabuzzatii is a representative species of the repleta group in the Drosophila subgenus, which is being widely used as a model in studies of genome evolution, ecological adaptation and speciation. We constructed a Bacterial Artificial Chromosome (BAC) genomic library of D. buzzatii using the shuttle vector pTARBAC2.1. The library comprises 18,353 clones with an average insert size of 152 kb and a {approx}18X expected representation of the D. buzzatii euchromatic genome. We screened the entire library with six euchromatic gene probes and estimated the actual genome representation to be {approx}23X. In addition, we fingerprinted by restriction digestion and agarose gel electrophoresis a sample of 9,555 clones, and assembled them using Finger Printed Contigs (FPC) software and manual editing into 345 contigs (mean of 26 clones per contig) and 670singletons. Finally, we anchored 181 large contigs (containing 7,788clones) to the D. buzzatii salivary gland polytene chromosomes by in situ hybridization of 427 representative clones. The BAC library and a database with all the information regarding the high coverage BAC-based physical map described in this paper are available …
Date: March 18, 2005
Creator: Gonzalez, Josefa; Nefedov, Michael; Bosdet, Ian; Casals, Ferran; Calvete, Oriol; Delprat, Alejandra et al.
System: The UNT Digital Library
Beam Halo Formation in High-Intensity Beams. (open access)

Beam Halo Formation in High-Intensity Beams.

Studies of beam halo became unavoidable feature of high-intensity machines where uncontrolled beam loss should be kept to extremely small level. For a well controlled stable beam such a loss is typically associated with the low density halo surrounding beam core. In order to minimize uncontrolled beam loss or improve performance of an accelerator, it is very important to understand what are the sources of halo formation in a specific machine of interest. The dominant mechanisms are, in fact, different in linear accelerators, circular machines or Energy Recovering Linacs (ERL). In this paper, we summarize basic mechanisms of halo formation in high-intensity beams and discuss their application to various types of accelerators of interest, such as linacs, rings and ERL.
Date: March 18, 2005
Creator: Fedotov, A. V.
System: The UNT Digital Library
Combinatorial Algorithms for Computing Column Space Bases ThatHave Sparse Inverses (open access)

Combinatorial Algorithms for Computing Column Space Bases ThatHave Sparse Inverses

This paper presents a combinatorial study on the problem ofconstructing a sparse basis forthe null-space of a sparse, underdetermined, full rank matrix, A. Such a null-space is suitable forsolving solving many saddle point problems. Our approach is to form acolumn space basis of A that has a sparse inverse, by selecting suitablecolumns of A. This basis is then used to form a sparse null-space basisin fundamental form. We investigate three different algorithms forcomputing the column space basis: Two greedy approaches that rely onmatching, and a third employing a divide and conquer strategy implementedwith hypergraph partitioning followed by the greedy approach. We alsodiscuss the complexity of selecting a column basis when it is known thata block diagonal basis exists with a small given block size.
Date: March 18, 2005
Creator: Pinar, Ali; Chow, Edmond & Pothen, Alex
System: The UNT Digital Library
The Dependence of Cloud Particle Size on Non-Aerosol-Loading Related Variables (open access)

The Dependence of Cloud Particle Size on Non-Aerosol-Loading Related Variables

An enhanced concentration of aerosol may increase the number of cloud drops by providing more cloud condensation nuclei (CCN), which in turn results in a higher cloud albedo at a constant cloud liquid water path. This process is often referred to as the aerosol indirect effect (AIE). Many in situ and remote sensing observations support this hypothesis (Ramanathan et al. 2001). However, satellite observed relations between aerosol concentration and cloud drop size are not always in agreement with the AIE. Based on global analysis of cloud effective radius (r{sub e}) and aerosol number concentration (N{sub a}) derived from satellite data, Sekiguchi et al. (2003) found that the correlations between the two variables can be either negative, or positive, or none, depending on the location of the clouds. They discovered that significantly negative r{sub e} - N{sub a} correlation can only be identified along coastal regions of the continents where abundant continental aerosols inflow from land, whereas Feingold et al. (2001) found that the response of r{sub e} to aerosol loading is the greatest in the region where aerosol optical depth ({tau}{sub a}) is the smallest. The reason for the discrepancy is likely due to the variations in cloud macroscopic properties …
Date: March 18, 2005
Creator: Shao, H. & Liu, G.
System: The UNT Digital Library
The Effect of Non-Lambertian Surface Reflectance on Aerosol Radiative Forcing (open access)

The Effect of Non-Lambertian Surface Reflectance on Aerosol Radiative Forcing

Surface reflectance is an important factor in determining the strength of aerosol radiative forcing. Previous studies of radiative forcing assumed that the reflected surface radiance is isotropic and does not depend on incident illumination angle. This Lambertian reflection model is not a very good descriptor of reflectance from real land and ocean surfaces. In this study we present computational results for the seasonal average of short and long wave aerosol radiative forcing at the top of the atmosphere and at the surface. The effect of the Lambertian assumption is found through comparison with calculations using a more detailed bi-direction reflectance distribution function (BRDF).
Date: March 18, 2005
Creator: Ricchiazzi, P.; O'Hirok, W. & Gautier, C.
System: The UNT Digital Library
Improvement in Clouds and the Earth's Radiant Energy System/Surface and Atmosphere Radiation Budget Dust Aerosol Properties, Effects on Surface Validation of Clouds and Radiative Swath (open access)

Improvement in Clouds and the Earth's Radiant Energy System/Surface and Atmosphere Radiation Budget Dust Aerosol Properties, Effects on Surface Validation of Clouds and Radiative Swath

Within the Clouds and the Earth's Radiant Energy System (CERES) science team (Wielicki et al. 1996), the Surface and Atmospheric Radiation Budget (SARB) group is tasked with calculating vertical profiles of heating rates, globally, and continuously, beneath CERES footprint observations of Top of Atmosphere (TOA) fluxes. This is accomplished using a fast radiative transfer code originally developed by Qiang Fu and Kuo-Nan Liou (Fu and Liou 1993) and subsequently highly modified by the SARB team. Details on the code and its inputs can be found in Kato et al. (2005) and Rose and Charlock (2002). Among the many required inputs is characterization of the vertical column profile of aerosols beneath each footprint. To do this SARB combines aerosol optical depth information from the moderate-resolution imaging spectroradiometer (MODIS) instrument along with aerosol constituents specified by the Model for Atmosphere and Chemical Transport (MATCH) of Collins et al. (2001), and aerosol properties (e.g. single scatter albedo and asymmetry parameter) from Tegen and Lacis (1996) and OPAC (Hess et al. 1998). The publicly available files that include these flux profiles, called the Clouds and Radiative Swath (CRS) data product, available from the Langley Atmospheric Sciences Data Center (http://eosweb.larc.nasa.gov/). As various versions of the …
Date: March 18, 2005
Creator: Rutan, D.; Rose, F. & Charlock, T. P.
System: The UNT Digital Library
Improvements in Near-Terminator and Nocturnal Cloud Masks using Satellite Imager Data over the Atmospheric Radiation Measurement Sites (open access)

Improvements in Near-Terminator and Nocturnal Cloud Masks using Satellite Imager Data over the Atmospheric Radiation Measurement Sites

Cloud detection using satellite measurements presents a big challenge near the terminator where the visible (VIS; 0.65 {micro}m) channel becomes less reliable and the reflected solar component of the solar infrared 3.9-{micro}m channel reaches very low signal-to-noise ratio levels. As a result, clouds are underestimated near the terminator and at night over land and ocean in previous Atmospheric Radiation Measurement (ARM) Program cloud retrievals using Geostationary Operational Environmental Satellite (GOES) imager data. Cloud detection near the terminator has always been a challenge. For example, comparisons between the CLAVR-x (Clouds from Advanced Very High Resolution Radiometer [AVHRR]) cloud coverage and Geoscience Laser Altimeter System (GLAS) measurements north of 60{sup o}N indicate significant amounts of missing clouds from AVHRR because this part of the world was near the day/night terminator viewed by AVHRR. Comparisons between MODIS cloud products and GLAS at the same regions also shows the same difficulty in the MODIS cloud retrieval (Pavolonis and Heidinger 2005). Consistent detection of clouds at all times of day is needed to provide reliable cloud and radiation products for ARM and other research efforts involving the modeling of clouds and their interaction with the radiation budget. To minimize inconsistencies between daytime and nighttime retrievals, …
Date: March 18, 2005
Creator: Trepte, Q. Z.; Minnis, P.; Heck, P. W. & Palikonda, R.
System: The UNT Digital Library
Incorporation of 3D Shortwave Radiative Effects within the Weather Research and Forecasting Model (open access)

Incorporation of 3D Shortwave Radiative Effects within the Weather Research and Forecasting Model

A principal goal of the Atmospheric Radiation Measurement (ARM) Program is to understand the 3D cloud-radiation problem from scales ranging from the local to the size of global climate model (GCM) grid squares. For climate models using typical cloud overlap schemes, 3D radiative effects are minimal for all but the most complicated cloud fields. However, with the introduction of ''superparameterization'' methods, where sub-grid cloud processes are accounted for by embedding high resolution 2D cloud system resolving models within a GCM grid cell, the impact of 3D radiative effects on the local scale becomes increasingly relevant (Randall et al. 2003). In a recent study, we examined this issue by comparing the heating rates produced from a 3D and 1D shortwave radiative transfer model for a variety of radar derived cloud fields (O'Hirok and Gautier 2005). As demonstrated in Figure 1, the heating rate differences for a large convective field can be significant where 3D effects produce areas o f intense local heating. This finding, however, does not address the more important question of whether 3D radiative effects can alter the dynamics and structure of a cloud field. To investigate that issue we have incorporated a 3D radiative transfer algorithm into the …
Date: March 18, 2005
Creator: O'Hirok, W.; Ricchiazzi, P. & Gautier, C.
System: The UNT Digital Library
The Influence of High Aerosol Concentration on Atmospheric Boundary Layer Temperature Stratification (open access)

The Influence of High Aerosol Concentration on Atmospheric Boundary Layer Temperature Stratification

Investigations of the changing in the atmospheric boundary layer (ABL) radiation balance as cased by natural and anthropogenic reasons is an important topic of the U.S. Department of Energy's Atmospheric Radiation Measurement (ARM) program. The influence of aerosol on temperature stratification of ABL while its concentration was extremely high within a long period of time was studied experimentally. The case was observed in Moscow region (Russia) with the transport of combustion products from peat-bog and forest fires in July-September, 2002. At this time the visibility was some times at about 100-300 m. Aerosol concentration measured by Moscow University Observatory and A.M. Obukhov Institute of Atmospheric Physics field station in Zvenigorod (55.7 N; 36.6 E) for several days was in 50-100 times more than background one (Gorchakov at al 2003). The high aerosol concentration can change the radiation balance at ABL, and so to change thermal stratification in ABL above the mega lopolis. For the analysis the data were used of synchronous measurements by MTP-5 (Microwave Temperature Profiler operating at wavelength 5 mm) in two locations, namely: downtown Moscow and country-side which is 50 km apart to the West (Zvenigorod station). (Kadygrov and Pick 1998; Westwater at al 1999; Kadygrov at …
Date: March 18, 2005
Creator: Khaykin, M.N.; Kadygrove, E.N. & Golitsyn, G.S.
System: The UNT Digital Library
Instrument Cross-Comparisons and Automated Quality Control of Atmospheric Radiation Measurement Data (open access)

Instrument Cross-Comparisons and Automated Quality Control of Atmospheric Radiation Measurement Data

Within the Atmospheric Radiation Measurement (ARM) instrument network, several different systems often measure the same quantity at the same site. For example, several ARM instruments measure time-series profiles of the atmosphere that were previously available only from balloon-borne radiosonde systems. These instruments include the Radar Wind Profilers (RWP) with Radio-Acoustic Sounding Systems (RASS), the Atmospheric Emitted Radiance Interferometer (AERI), the Microwave Radiometer Profiler (MWRP), and the Raman Lidar (RL). ARM researchers have described methods for direct cross-comparison of time-series profiles (Coulter and Lesht 1996; Turner et al. 1996) and we have extended this concept to the development of methods for automated quality control (QC) of ARM datastreams.
Date: March 18, 2005
Creator: Moore, S. & Hughes, G.
System: The UNT Digital Library
Inversion of Multi-Angle Radiation Measurement (open access)

Inversion of Multi-Angle Radiation Measurement

Our need to reconcile models and measurements in an efficient manner that allows for the operational retrieval of particle sizes for a two layer cloud led us to develop a new method for calculating the Green's functions for radiative transfer. The method uses the fact that doubling/adding codes can be easily used to calculate internal radiation fields at arbitrarily high resolution. We have also determined that the adjoint downwelling and upwelling vector radiation fields are simply related to the usual downwelling and upwelling vector radiation fields so that the entire Green's function can be determined from a single calculation. The Green's functions have then been used to calculate the particle sizes in a two layer cloud that are consistent with both the reflectance and polarization measurements. This approach may be of use in other applications where adjoint calculations are used, particularly if multiangle measurements are being analyzed.
Date: March 18, 2005
Creator: Cairns, B.; Alexandrov, M. Lacis, A. & Carlson, B.
System: The UNT Digital Library
Investigation of the Impact of Aerosols on Clouds During May 2003 Intensive Operational Period at the Southern Great Plains (open access)

Investigation of the Impact of Aerosols on Clouds During May 2003 Intensive Operational Period at the Southern Great Plains

The effect of aerosols on the clouds, or the so-called aerosol indirect effect (AIE), is highly uncertain (Penner et al. 2001). The estimation of the AIE can vary from 0.0 to -4.8 W/m2 in Global Climate Models (GCM). Therefore, it is very important to investigate these interactions and cloud-related physical processes further. The Aerosol Intensive Operation Period (AIOP) at the Southern Great Plains (SGP) site in May 2003 dedicated some effort towards the measurement of the Cloud Condensation Nucleus concentration (CCN) as a function of super-saturation and in relating CCN concentration to aerosol composition and size distribution. Furthermore, airborn measurement for the cloud droplet concentration was also available. Therefore this AIOP provides a good opportunity to examine the AIE. In this study, we use a Cloud Resolving Model (CRM), i.e., Active Tracer High-resolution Atmospheric Model (ATHAM), to discuss the effect of aerosol loadings on cloud droplet effective radius (Re) and concentration. The case we examine is a stratiform cloud that occurred on May 17, 2003.
Date: March 18, 2005
Creator: Guo, H.; Penner, J.E. & Herzog, M.
System: The UNT Digital Library