Idaho Nuclear Technology and Engineering Center Low-Activity Waste Process Technology Program, FY-98 Status Report (open access)

Idaho Nuclear Technology and Engineering Center Low-Activity Waste Process Technology Program, FY-98 Status Report

The Low-Activity Waste Process Technology Program at the Idaho Nuclear Technology and Engineering Center (INTEC) anticipates that large volumes of low-level/low-activity wastes will need to be grouted prior to near-surface disposal. During fiscal year 1998, three grout formulations were studied for low-activity wastes derived from INTEC liquid sodium-bearing waste. Compressive strength and leach results are presented for phosphate bonding cement, acidic grout, and alkaline grout formulations. In an additional study, grout formulations are recommended for stabilization of the INTEC underground storage tank residual heels.
Date: March 1, 1999
Creator: Herbst, A. K.; McCray, J. A.; Rogers, A. Z.; Simmons, R. F. & Palethorpe, S. J.
System: The UNT Digital Library
Idaho Nuclear Technology and Engineering Center Low-Activity Waste Process Technology Program FY-98 Status Report (open access)

Idaho Nuclear Technology and Engineering Center Low-Activity Waste Process Technology Program FY-98 Status Report

The Low-Activity Waste Process Technology Program at the Idaho Nuclear Technology and Engineering Center (INTEC) anticipates that large volumes of low-level/low-activity wastes will need to be grouted prior to near-surface disposal. During fiscal year 1998, three grout formulations were studied for low-activity wastes derived from INTEC liquid sodium-bearing waste. Compressive strength and leach results are presented for phosphate bonding cement, acidic grout, and alkaline grout formulations. In an additional study, grout formulations are recommended for stabilization of the INTEC underground storage tank residual heels.
Date: March 1, 1999
Creator: Herbst, A. K.; McCray, J. A.; Rogers, A. Z.; Simmons, R. F. & Palethrope, S. J.
System: The UNT Digital Library
Idaho Nuclear Technology and Engineering Center Low-Activity Waste Process Technology Program FY-98 Status Report (open access)

Idaho Nuclear Technology and Engineering Center Low-Activity Waste Process Technology Program FY-98 Status Report

The Low-Activity Waste Process Technology Program at the Idaho Nuclear Technology and Engineering Center (INTEC) anticipates that large volumes of low-level/low-activity wastes will need to be grouted prior to near-surface disposal. During fiscal year 1998, three grout formulations were studied for low-activity wastes derived from INTEC liquid sodium-bearing waste. Compressive strength and leach results are presented for phosphate bonding cement, acidic grout, and alkaline grout formulations. In an additional study, grout formulations are recommended for stabilization of the INTEC underground storage tank residual heels.
Date: March 1, 1999
Creator: Herbst, Alan Keith; Mc Cray, John Alan; Rogers, Adam Zachary; Simmons, R. F. & Palethorpe, S. J.
System: The UNT Digital Library
Fiscal year 1998 memorandum of understanding for the TWRS characterization project (open access)

Fiscal year 1998 memorandum of understanding for the TWRS characterization project

During fiscal year 1998, the level of success achieved by the Tank Waste Remediation System (TWRS) shall be determined by specific performance measures. These measures take the form of significant deliverables, one of which is the completion of Tank Characterization Reports (TCRs). In order to achieve success regarding the TCR performance deliverable, multiple organizations across TWRS must work together. Therefore, the requirements and expectations needed from each of these TWRS organizations were examined in order to gain an understanding of the performance necessary from each organization to achieve the end deliverable. This memorandum of understanding (MOU) documents the results of this review and establishes the performance criteria by which TWRS will assess its progress and success. These criteria have been determined based upon a TWRS Characterization Project budget of $47.5 million for fiscal year 1998; if this budget is changed or the currently identified work scope is modified, this MOU will need to be revised accordingly. This MOU is subdivided into six sections, where sections three through six each identify individual interfaces between TWRS organizations. The specific performance criteria related to each TWRS organizational interface are then delineated in the section, along with any additional goals or issues pertaining to …
Date: March 24, 1998
Creator: Schreiber, R. D.
System: The UNT Digital Library
FY98 Status Report on the HSV (open access)

FY98 Status Report on the HSV

The HSV in storage in MTF has been monitored during FY98, and its overpressure has been sampled and analyzed.
Date: March 25, 1999
Creator: Shanahan, K. L.
System: The UNT Digital Library
Geothermal Energy Draft Multi-Year Program Plan: FY 1996-2000 (open access)

Geothermal Energy Draft Multi-Year Program Plan: FY 1996-2000

This is an internal DOE Geothermal Program planning and control document. The Five Year Plans and Multi-Year Plans usually included more detailed rationales and projections than other similar reports. Many of these reports were issued only in draft form.
Date: March 3, 1995
Creator: unknown
System: The UNT Digital Library
Massachusetts Institute of Technology, Plasma Fusion Center FY97--FY98 work proposal (open access)

Massachusetts Institute of Technology, Plasma Fusion Center FY97--FY98 work proposal

Alcator C-Mod is the high-field, high-density divertor tokamak in the world fusion program. It is one of five divertor experiments capable of plasma currents exceeding one megamp. Because of its compact dimensions, Alcator C-Mod investigates an essential area in parameter space, which complements the world`s larger experiments, in establishing the tokamak physics database. Three key areas of investigation have been called out in which Alcator C-Mod has a vital role to play: (1) divertor research on C-Mod takes advantage of the advanced divertor shaping, the very high scrap-off-layer power density, unique abilities in impurity diagnosis, and the High-Z metal wall, to advance the physics understanding of this critical topic; (2) in transport studies, C-Mod is making critical tests of both empirical scalings and theoretically based interpretations of tokamak transport, at dimensional parameters that are unique but dimensionless parameters often comparable to those in much larger experiments; (3) in the area of Advanced Tokamak research, so important to concept optimization, the high-field design of the device also provides long pulse length, compared to resistive skin time, which provides an outstanding opportunity to investigate the extent to which enhanced confinement and stability can be sustained in steady-state, using active profile control. In …
Date: March 1, 1996
Creator: unknown
System: The UNT Digital Library
Superconductivity for electric systems program plan, FY 1996--FY 2000 (open access)

Superconductivity for electric systems program plan, FY 1996--FY 2000

This describes a comprehensive, integrated approach for the development of HTS (high-temperature superconductivity) technology for cost-effective use in electric power applications. This approach supports the program`s mission: to develop the technology that could lead to industrial commercialization of HTS electric power applications, such as fault-current limiters, motors, generators, transmission cables, superinductors, and superconducting energy storage. The vision is that, by 2010, the US power systems equipment industry will regain a major share of the global market by offering superconducting products that outperform the competition; and in US, the power grid will gain increased efficiency and stability by incorporating many kinds of HTS devices. After an overview and a discussion of the program plan (wires, systems technology, partnership initiative), this document discusses technology status, stakeholders, and the role of US DOE.
Date: March 1, 1996
Creator: unknown
System: The UNT Digital Library