Resource Type

Month

8 Matching Results

Results open in a new window/tab.

Chemical Profiling of the Plant Cell Wall through Raman Microspectroscopy (open access)

Chemical Profiling of the Plant Cell Wall through Raman Microspectroscopy

This paper presents a computational framework for chemical pro.ling of the plant cell wall through the Raman spectroscopy. The system enables query of known spectral signatures and clustering of spectral data based on intrinsic properties. As a result, presence and relative concentration of speci.c chemical bonds can be quanti.ed. The primary contribution of this paper is in representation of raman pro.le in terms of .uorescence background and multiscale peak detection at each grid point (voxel). Such a representation allows ef.cient spatial segmentation based on the coupling between high-level salient properties and low-level symbolic representation at each voxel. The high-level salient properties refer to preferred peaks and their attributes for the entire image. The low-level symbolic representations are based on .uorescence background, spectral peak locations, and their attributes. We present results on a corn stover tissue section that is imaged through Raman microscopy, and the results are consistent with the literature. In addition, automatic clustering indicates several distinct layers of the cell walls with different spectral signatures.
Date: March 2, 2010
Creator: Han, Ju; Singh, Seema; Sun, Lan; Simmons, Blake; Auer, Manfred & Parvin, Bahram
System: The UNT Digital Library
Determination of ionization energies of CnN (n=4-12): Vacuum-ultraviolet (VUV) photoionization experiments and theoretical calculations (open access)

Determination of ionization energies of CnN (n=4-12): Vacuum-ultraviolet (VUV) photoionization experiments and theoretical calculations

Results from single photon vacuum ultraviolet photoionization of astrophysically relevant CnN clusters, n = 4 - 12, in the photon energy range of 8.0 eV to 12.8 eV are presented. The experimental photoionization efficiency curves, combined with electronic structure calculations, provide improved ionization energies of the CnN species. A search through numerous nitrogen-terminated CnN isomers for n=4-9 indicates that the linear isomer has the lowest energy, and therefore should be the most abundant isomer in the molecular beam. Comparison with calculated results also shed light on the energetics of the linear CnN clusters, particularly in the trends of the even-carbon and the odd-carbon series. These results can help guide the search of potential astronomical observations of these neutral molecules together with their cations in highly ionized regions or regions with a high UV/VUV photon flux (ranging from the visible to VUV with flux maxima in the Lyman-a region) in the interstellar medium.
Date: March 2, 2010
Creator: Kostko, Oleg; Zhou, Jia; Sun, Bian Jian; Lie, Jie Shiuan; Chang, Agnes H.H.; Kaiser, Ralf I. et al.
System: The UNT Digital Library
Dissecting Regional Variations in Stress Fiber Mechanics in Living Cells with Laser Nanosurgery (open access)

Dissecting Regional Variations in Stress Fiber Mechanics in Living Cells with Laser Nanosurgery

The ability of a cell to distribute contractile stresses across the extracellular matrix in a spatially heterogeneous fashion underlies many cellular behaviors, including motility and tissue assembly. Here we investigate the biophysical basis of this phenomenon by using femtosecond laser nanosurgery to measure the viscoelastic recoil and cell-shape contributions of contractile stress fibers (SFs) located in specific compartments of living cells. Upon photodisruption and recoil, myosin light chain kinase-dependent SFs located along the cell periphery display much lower effective elasticities and higher plateau retraction distances than Rho-associated kinase-dependent SFs located in the cell center, with severing of peripheral fibers uniquely triggering a dramatic contraction of the entire cell within minutes of fiber irradiation. Image correlation spectroscopy reveals that when one population of SFs is pharmacologically dissipated, actin density flows toward the other population. Furthermore, dissipation of peripheral fibers reduces the elasticity and increases the plateau retraction distance of central fibers, and severing central fibers under these conditions triggers cellular contraction. Together, these findings show that SFs regulated by different myosin activators exhibit different mechanical properties and cell shape contributions. They also suggest that some fibers can absorb components and assume mechanical roles of other fibers to stabilize cell shape.
Date: March 2, 2010
Creator: Tanner, Kandice; Boudreau, Aaron; Bissell, Mina J & Kumar, Sanjay
System: The UNT Digital Library
Embedded Fiber Optic Probes to Measure Detonation Velocities Using the Photonic Doppler Velocimeter (open access)

Embedded Fiber Optic Probes to Measure Detonation Velocities Using the Photonic Doppler Velocimeter

Detonation velocities for high explosives can be in the 7 to 8 km/s range. Previous work has shown that these velocities may be measured by inserting an optical fiber probe into the explosive assembly and recording the velocity time history using a Fabry-Perot velocimeter. The measured velocity using this method, however, is the actual velocity multiplied times the refractive index of the fiber core, which is on the order of 1.5. This means that the velocimeter diagnostic must be capable of measuring velocities as high as 12 km/s. Until recently, a velocity of 12 km/s was beyond the maximum velocity limit of a homodyne-based velocimeter. The limiting component in a homodyne system is usually the digitizer. Recently, however, digitizers have come on the market with 20 GHz bandwidth and 50 GS/s sample rate. Such a digitizer coupled with high bandwidth detectors now have the total bandwidth required to make velocity measurements in the 12 km/s range. This paper describes measurements made of detonation velocities using a high bandwidth homodyne system.
Date: March 2, 2010
Creator: Hare, D E; Holtkamp, D B & Strand, O T
System: The UNT Digital Library
EXPERIMENTAL TESTS OF VANADIUM STRENGTH MODELS AT HIGH PRESSURES AND STRAIN RATES (open access)

EXPERIMENTAL TESTS OF VANADIUM STRENGTH MODELS AT HIGH PRESSURES AND STRAIN RATES

Experimental results showing significant reductions from classical in the Rayleigh-Taylor (RT) instability growth rate due to high pressure material strength or effective lattice viscosity in metal foils are presented. On the Omega Laser in the Laboratory for Laser Energetics, University of Rochester, target samples of polycrystalline vanadium are compressed and accelerated quasi-isentropically at {approx}1 Mbar pressures, while maintaining the samples in the solid-state. Comparison of the results with constitutive models for solid state strength under these conditions show that the measured RT growth is substantially lower than predictions using existing models that work well at low pressures and long time scales. High pressure, high strain rate data can be explained by the enhanced strength due to a phonon drag mechanism, creating a high effective lattice viscosity.
Date: March 2, 2010
Creator: Park, H.; Barton, N. R.; Becker, R. C.; Bernier, J. V.; Cavallo, R. M.; Lorenz, K. T. et al.
System: The UNT Digital Library
Model-Based Detection of Radioactive Contraband for Harbor Defense Incorporating Compton Scattering Physics (open access)

Model-Based Detection of Radioactive Contraband for Harbor Defense Incorporating Compton Scattering Physics

The detection of radioactive contraband is a critical problem is maintaining national security for any country. Photon emissions from threat materials challenge both detection and measurement technologies especially when concealed by various types of shielding complicating the transport physics significantly. This problem becomes especially important when ships are intercepted by U.S. Coast Guard harbor patrols searching for contraband. The development of a sequential model-based processor that captures both the underlying transport physics of gamma-ray emissions including Compton scattering and the measurement of photon energies offers a physics-based approach to attack this challenging problem. The inclusion of a basic radionuclide representation of absorbed/scattered photons at a given energy along with interarrival times is used to extract the physics information available from the noisy measurements portable radiation detection systems used to interdict contraband. It is shown that this physics representation can incorporated scattering physics leading to an 'extended' model-based structure that can be used to develop an effective sequential detection technique. The resulting model-based processor is shown to perform quite well based on data obtained from a controlled experiment.
Date: March 2, 2010
Creator: Candy, J V; Chambers, D H; Breitfeller, E F; Guidry, B L; Verbeke, J M; Axelrod, M A et al.
System: The UNT Digital Library
Photoelectron Spectroscopy of U Oxide at LLNL (open access)

Photoelectron Spectroscopy of U Oxide at LLNL

In our laboratory at LLNL, an effort is underway to investigate the underlying complexity of 5f electronic structure with spin-resolved photoelectron spectroscopy using chiral photonic excitation, i.e. Fano Spectroscopy. Our previous Fano measurements with Ce indicate the efficacy of this approach and theoretical calculations and spectral simulations suggest that Fano Spectroscopy may resolve the controversy concerning Pu electronic structure and electron correlation. To this end, we have constructed and commissioned a new Fano Spectrometer, testing it with the relativistic 5d system Pt. Here, our preliminary photoelectron spectra of the UO{sub 2} system are presented. X-ray photoelectron spectroscopy has been used to characterize a sample of UO{sub 2} grown on an underlying substrate of Uranium. Both AlK{alpha} (1487 eV) and MgK{alpha} (1254 eV) emission were utilized as the excitation. Using XPS and comparing to reference spectra, it has been shown that our sample is clearly UO{sub 2}.
Date: March 2, 2010
Creator: Tobin, J. G.; Yu, S.; Chung, B. W. & Waddill, G. D.
System: The UNT Digital Library
X-ray magnetic circular dichroism and reflection anisotropy spectroscopy Kerr effect studies of capped magnetic nanowires (open access)

X-ray magnetic circular dichroism and reflection anisotropy spectroscopy Kerr effect studies of capped magnetic nanowires

Aligned Co wires grown on Pt(997) under ultra-high vacuum conditions have been capped successfully by the epitaxial growth of Au monolayers (ML) at room temperature. The samples were kept under vacuum except when transferring between apparatus or when making some of the measurements. No degradation of the Co wires was detected during the measurements. The magneto-optic response of the system was measured using X-ray magnetic circular dichroism (XMCD) at the Co L{sub 2,3} edge and reflection anisotropy spectroscopy (RAS) at near normal incidence, which is sensitive to the normal component of the out-of-plane magnetization via the Kerr effect (MOKE). Capping the wires significantly impacts their magnetic properties. Comparison of the magneto-optic response of the system at X-ray and optical energies reveals small differences that are attributed to the induced moment in the Pt substrate and Au capping layer not picked up by the element specific XMCD measurements. The sensitivity of RAS-MOKE is sufficient to allow the determination of the easy axis direction of the capped wires to within a few degrees. The results for a 6-atom-wide Co wire sample, capped with 6 ML of Au, are consistent with the capped wires possessing perpendicular magnetization.
Date: March 2, 2010
Creator: Cunniffe, J. P.; McNally, D.E.; Liberati, M.; Arenholz, E.; McGuinness, C. & McGilp, J. F.
System: The UNT Digital Library