Resource Type

States

227 Matching Results

Results open in a new window/tab.

Studying the Underlying Event in Drell-Yan and High Transverse Momentum Jet Production at the Tevatron (open access)

Studying the Underlying Event in Drell-Yan and High Transverse Momentum Jet Production at the Tevatron

We study the underlying event in proton-antiproton collisions by examining the behavior of charged particles (transverse momentum p{sub T} > 0.5 GeV/c, pseudorapidity |{eta}| < 1) produced in association with large transverse momentum jets ({approx}2.2 fb{sup -1}) or with Drell-Yan lepton-pairs ({approx}2.7 fb{sup -1}) in the Z-boson mass region (70 < M(pair) < 110 GeV/c{sup 2}) as measured by CDF at 1.96 TeV center-of-mass energy. We use the direction of the lepton-pair (in Drell-Yan production) or the leading jet (in high-p{sub T} jet production) in each event to define three regions of {eta}-{phi} space; toward, away, and transverse, where {phi} is the azimuthal scattering angle. For Drell-Yan production (excluding the leptons) both the toward and transverse regions are very sensitive to the underlying event. In high-p{sub T} jet production the transverse region is very sensitive to the underlying event and is separated into a MAX and MIN transverse region, which helps separate the hard component (initial and final-state radiation) from the beam-beam remnant and multiple parton interaction components of the scattering. The data are corrected to the particle level to remove detector effects and are then compared with several QCD Monte-Carlo models. The goal of this analysis is to provide …
Date: March 1, 2010
Creator: Aaltonen, T.; Adelman, J.; Gonzalez, B.Alvarez; Amerio, S.; Amidei, D.; Anastassov, A. et al.
System: The UNT Digital Library
Measurement of $d\sigma/dy$ of Drell-Yan $e^+e^-$ pairs in the $Z$ Mass Region from $p\bar{p}$ Collisions at $\sqrt{s}=1.96$ TeV (open access)

Measurement of $d\sigma/dy$ of Drell-Yan $e^+e^-$ pairs in the $Z$ Mass Region from $p\bar{p}$ Collisions at $\sqrt{s}=1.96$ TeV

We report on a CDF measurement of the total cross section and rapidity distribution, d{sigma}/dy, for q{bar q} {yields} {gamma}{sup *}/Z {yields} e{sup +} e {sup -} events in the Z boson mass region (66 < M {sub ee} < 116 GeV/c {sub 2}) produced in p{bar p} collisions at {radical}s = 1.96 TeV with 2.1 fb{sup -1} of integrated luminosity. The measured cross section of 257 {+-} 16pb and d{sigma}/dy distribution are compared with Next-to-Leading-Order (NLO) and Next-to-Next-to-Leading-Order (NNLO) QCD theory predictions with CTEQ and MRST/MSTW parton distribution functions (PDFs). There is good agreement between the experimental total cross section and d{sigma}/dy measurements with theoretical calcualtion with the most recent NNLO PDFs.
Date: March 1, 2010
Creator: Aaltonen, Timo Antero; Phys., /Helsinki Inst. of; Adelman, Jahred A.; /Chicago U., EFI; Gonzalez, Barbara Alvarez; Phys., /Cantabria Inst. of et al.
System: The UNT Digital Library
Pressure-induced isostructural transition in PdN2 (open access)

Pressure-induced isostructural transition in PdN2

We show that a synthesized Pd-N compound crystallize into the pyrite structure by comparison of experimental and calculated Raman intensities. The decreasing Raman intensities with decreasing pressure is explained by a closing of the fundamental band gap. We further discuss the experimental decomposition of this compound at 11 GPa in terms of an isostructural transition within the pyrite structure.
Date: March 5, 2010
Creator: Aberg, D; Erhart, P; Crowhurst, J; Zaug, J M; Goncharov, A F & Sadigh, B
System: The UNT Digital Library
The Biological and Toxicological Activity of Gases and Vapors (open access)

The Biological and Toxicological Activity of Gases and Vapors

Article discussing research on the biological and toxicological activity of gases and vapors.
Date: March 2010
Creator: Abraham, M. H. (Michael H.); Sánchez-Moreno, Ricardo; Gil-Lostes, Javier; Acree, William E. (William Eugene); Cometto-Muñiz, J. Enrique & Cain, William S.
System: The UNT Digital Library
Research Reactor Preparations for the Air Shipment of Highly Enriched Uranium from Romania (open access)

Research Reactor Preparations for the Air Shipment of Highly Enriched Uranium from Romania

In June 2009 two air shipments transported both unirradiated (fresh) and irradiated (spent) Russian-origin highly enriched uranium (HEU) nuclear fuel from two research reactors in Romania to the Russian Federation for conversion to low enriched uranium. The Institute for Nuclear Research at Pitesti (SCN Pitesti) shipped 30.1 kg of HEU fresh fuel pellets to Dimitrovgrad, Russia and the Horia Hulubei National Institute of Physics and Nuclear Engineering (IFIN-HH) shipped 23.7 kilograms of HEU spent fuel assemblies from the VVR S research reactor at Magurele, Romania, to Chelyabinsk, Russia. Both HEU shipments were coordinated by the Russian Research Reactor Fuel Return Program (RRRFR) as part of the U.S. Department of Energy Global Threat Reduction Initiative (GTRI), were managed in Romania by the National Commission for Nuclear Activities Control (CNCAN), and were conducted in cooperation with the Russian Federation State Corporation Rosatom and the International Atomic Energy Agency. Both shipments were transported by truck to and from respective commercial airports in Romania and the Russian Federation and stored at secure nuclear facilities in Russia until the material is converted into low enriched uranium. These shipments resulted in Romania becoming the 3rd country under the RRRFR program and the 14th country under the …
Date: March 1, 2010
Creator: Allen, K. J.; Bolshinsky, I.; Biro, L. L.; Budu, M. E.; Zamfir, N. V.; Dragusin, M. et al.
System: The UNT Digital Library
Composition of the Earth's Inner Core from High-pressure Sound Velocity Measurements in Fe-Ni-Si alloys (open access)

Composition of the Earth's Inner Core from High-pressure Sound Velocity Measurements in Fe-Ni-Si alloys

None
Date: March 11, 2010
Creator: Antonangeli, D.; Siebert, J.; Badro, J.; Farber, D. L.; Fiquet, G.; Morard, G. et al.
System: The UNT Digital Library
Water adsorption, solvation and deliquescence of alkali halide thin films on SiO2 studied by ambient pressure X-ray photoelectron spectroscopy (open access)

Water adsorption, solvation and deliquescence of alkali halide thin films on SiO2 studied by ambient pressure X-ray photoelectron spectroscopy

The adsorption of water on KBr thin films evaporated onto SiO2 was investigated as a function of relative humidity (RH) by ambient pressure X-ray photoelectron spectroscopy. At 30percent RH adsorbed water reaches a coverage of approximately one monolayer. As the humidity continues to increase, the coverage of water remains constant or increases very slowly until 60percent RH, followed by a rapid increase up to 100percent RH. At low RH a significant number of the Br atoms are lost due to irradiation damage. With increasing humidity solvation increases ion mobility and gives rise to a partial recovery of the Br/K ratio. Above 60percent RH the increase of the Br/K ratio accelerates. Above the deliquescence point (85percent RH), the thickness of the water layer continues to increase and reaches more than three layers near saturation. The enhancement of the Br/K ratio at this stage is roughly a factor 2.3 on a 0.5 nm KBr film, indicating a strong preferential segregation of Br ions to the surface of the thin saline solution on SiO2.
Date: March 31, 2010
Creator: Arima, Kenta; Jiang, Peng; Deng, Xingyi; Bluhm, Henrik & Salmeron, Miquel
System: The UNT Digital Library
Systematic reduction of sign errors in many-body calculations of atoms and molecules (open access)

Systematic reduction of sign errors in many-body calculations of atoms and molecules

None
Date: March 29, 2010
Creator: Bajdich, M.; Tiago, M. L.; Hood, R. Q.; Kent, P. R. & Reboredo, F. A.
System: The UNT Digital Library
Stability of modulation transfer function calibration of surface profilometers using binary pseudo-random gratings and arrays with nonideal groove shapes (open access)

Stability of modulation transfer function calibration of surface profilometers using binary pseudo-random gratings and arrays with nonideal groove shapes

The major problem of measurement of a power spectral density (PSD) distribution of surface heights with surface profilometers arises due to the unknown Modulation Transfer Function (MTF) of the instruments, which tends to distort the PSD at higher spatial frequencies. The special mathematical properties of binary pseudo-random patterns make them an ideal basis for developing MTF calibration test surfaces. Two-dimensional binary pseudo-random arrays (BPRAs) have been fabricated and used for the MTF calibration of the MicroMap{trademark}-570 interferometric microscope with all available objectives. An investigation into the effects of fabrication imperfections on the quality of the MTF calibration and a procedure for accounting for such imperfections are presented.
Date: March 31, 2010
Creator: Barber, Samuel K.; Anderson, Erik H.; Cambie, Rossana; Marchesini, Stefano; McKinney, Wayne R.; Takacs, Peter Z. et al.
System: The UNT Digital Library
Simulations for experimental study of warm dense matter and inertial fusion energy applications on NDCX-II (open access)

Simulations for experimental study of warm dense matter and inertial fusion energy applications on NDCX-II

The Neutralized Drift Compression Experiment II (NDCX II) is an induction accelerator planned for initial commissioning in 2012. The final design calls for a {approx}3 MeV, {approx}30 A Li{sup +} ion beam, delivered in a bunch with characteristic pulse duration of 1 ns, and transverse dimension of order 1 mm. The purpose of NDCX II is to carry out experimental studies of material in the warm dense matter regime, and ion beam/hydrodynamic coupling experiments relevant to heavy ion based inertial fusion energy. In preparation for this new machine, we have carried out hydrodynamic simulations of ion-beam-heated, metallic solid targets, connecting quantities related to observables, such as brightness temperature and expansion velocity at the critical frequency, with the simulated fluid density, temperature, and velocity. We examine how these quantities depend on two commonly used equations of state.
Date: March 19, 2010
Creator: Barnard, J. J.; Armijo, J.; Bieniosek, F. M.; Friedman, A.; Hay, M. J.; Henestroza, E. et al.
System: The UNT Digital Library
Major Effects in the Thermodynamics of Detonation Products: Phase Segregation versus Ionic Dissociation (open access)

Major Effects in the Thermodynamics of Detonation Products: Phase Segregation versus Ionic Dissociation

Water (H{sub 2}O) and nitrogen (N{sub 2}) are major detonation products of high explosives and it has long been conjectured that they may phase segregate at high enough temperatures and pressures to influence detonation properties of common explosives. We analyze the phase diagram of H{sub 2}O-N{sub 2} mixtures using a thermodynamic theory for polar-nonpolar mixtures and find that phase segregation is unlikely to occur above approximately 1600K. Therefore, H{sub 2}O-N{sub 2} immiscibility is not likely to be relevant for detonation predictions. We propose instead that the high pressure ionic dissociation of water plays an important role in detonation, and model it using a new ionic thermodynamics. We employ this model in chemical equilibrium calculations of standard high explosives, e.g. PETN, HMX and RDX, and find that it performs very well under a wide range of conditions. Thus, although it may require further development, it is likely that explicitly ionic thermodynamics will become a standard tool for explosives modeling.
Date: March 9, 2010
Creator: Bastea, S & Fried, L E
System: The UNT Digital Library
Photoacoustically Measured Speeds of Sound of Liquid HBO2: On Unlocking the Fuel Potential of Boron (open access)

Photoacoustically Measured Speeds of Sound of Liquid HBO2: On Unlocking the Fuel Potential of Boron

Elucidation of geodynamic, geochemical, and shock induced processes is often limited by challenges to accurately determine molecular fluid equations of state (EOS). High pressure liquid state reactions of carbon species underlie physiochemical mechanisms such as differentiation of planetary interiors, deep carbon sequestration, propellant deflagration, and shock chemistry. Here we introduce a versatile photoacoustic technique developed to measure accurate and precise speeds of sound (SoS) of high pressure molecular fluids and fluid mixtures. SoS of an intermediate boron oxide, HBO{sub 2} are measured up to 0.5 GPa along the 277 C isotherm. A polarized Exponential-6 interatomic potential form, parameterized using our SoS data, enables EOS determinations and corresponding semi-empirical evaluations of > 2000 C thermodynamic states including energy release from bororganic formulations. Our thermochemical model propitiously predicts boronated hydrocarbon shock Hugoniot results.
Date: March 24, 2010
Creator: Bastea, S.; Crowhurst, J.; Armstrong, M. & Teslich, Nick, Jr.
System: The UNT Digital Library
Band Collapse and the Quantum Hall Effect in Graphene (open access)

Band Collapse and the Quantum Hall Effect in Graphene

The recent Quantum Hall experiments in graphene have confirmed the theoretically well-understood picture of the quantum Hall (QH) conductance in fermion systems with continuum Dirac spectrum. In this paper we take into account the lattice, and perform an exact diagonalization of the Landau problem on the hexagonal lattice. At very large magnetic fields the Dirac argument fails completely and the Hall conductance, given by the number of edge states present in the gaps of the spectrum, is dominated by lattice effects. As the field is lowered, the experimentally observed situation is recovered through a phenomenon which we call band collapse. As a corollary, for low magnetic field, graphene will exhibit two qualitatively different QHE's: at low filling, the QHE will be dominated by the 'relativistic' Dirac spectrum and the Hall conductance will be odd-integer; above a certain filling, the QHE will be dominated by a non-relativistic spectrum, and the Hall conductance will span all integers, even and odd.
Date: March 16, 2010
Creator: Bernevig, B.Andrei; Hughes, Taylor L.; Zhang, Shou-Cheng; /Stanford U., Phys. Dept.; Chen, Han-Dong; /Illinois U., Urbana et al.
System: The UNT Digital Library
First-principles analysis of electron-phonon interactions in graphene (open access)

First-principles analysis of electron-phonon interactions in graphene

Article on first-principles analysis of electron-phonon interactions in graphene.
Date: March 16, 2010
Creator: Borysenko, Kostyantyn M.; Mullen, Jeffrey T.; Barry, E. A.; Paul, S.; Semenov, Yuriy G.; Zavada, J. M. et al.
System: The UNT Digital Library
AutomaDeD: Automata-Based Debugging for Dissimilar Parallel Tasks (open access)

AutomaDeD: Automata-Based Debugging for Dissimilar Parallel Tasks

Today's largest systems have over 100,000 cores, with million-core systems expected over the next few years. This growing scale makes debugging the applications that run on them a daunting challenge. Few debugging tools perform well at this scale and most provide an overload of information about the entire job. Developers need tools that quickly direct them to the root cause of the problem. This paper presents AutomaDeD, a tool that identifies which tasks of a large-scale application first manifest a bug at a specific code region at a specific point during program execution. AutomaDeD creates a statistical model of the application's control-flow and timing behavior that organizes tasks into groups and identifies deviations from normal execution, thus significantly reducing debugging effort. In addition to a case study in which AutomaDeD locates a bug that occurred during development of MVAPICH, we evaluate AutomaDeD on a range of bugs injected into the NAS parallel benchmarks. Our results demonstrate that detects the time period when a bug first manifested itself with 90% accuracy for stalls and hangs and 70% accuracy for interference faults. It identifies the subset of processes first affected by the fault with 80% accuracy and 70% accuracy, respectively and the …
Date: March 23, 2010
Creator: Bronevetsky, G; Laguna, I; Bagchi, S; de Supinski, B R; Ahn, D & Schulz, M
System: The UNT Digital Library
Statistical Fault Detection for Parallel Applications with AutomaDeD (open access)

Statistical Fault Detection for Parallel Applications with AutomaDeD

Today's largest systems have over 100,000 cores, with million-core systems expected over the next few years. The large component count means that these systems fail frequently and often in very complex ways, making them difficult to use and maintain. While prior work on fault detection and diagnosis has focused on faults that significantly reduce system functionality, the wide variety of failure modes in modern systems makes them likely to fail in complex ways that impair system performance but are difficult to detect and diagnose. This paper presents AutomaDeD, a statistical tool that models the timing behavior of each application task and tracks its behavior to identify any abnormalities. If any are observed, AutomaDeD can immediately detect them and report to the system administrator the task where the problem began. This identification of the fault's initial manifestation can provide administrators with valuable insight into the fault's root causes, making it significantly easier and cheaper for them to understand and repair it. Our experimental evaluation shows that AutomaDeD detects a wide range of faults immediately after they occur 80% of the time, with a low false-positive rate. Further, it identifies weaknesses of the current approach that motivate future research.
Date: March 23, 2010
Creator: Bronevetsky, G; Laguna, I; Bagchi, S; de Supinski, B R; Ahn, D & Schulz, M
System: The UNT Digital Library
Transverse field-induced nucleation pad switching modes during domain wall injection (open access)

Transverse field-induced nucleation pad switching modes during domain wall injection

We have used magnetic transmission X-ray microscopy (M-TXM) to image in-field magnetization configurations of patterned Ni{sub 80}Fe{sub 20} domain wall 'injection pads' and attached planar nanowires. Comparison with micromagnetic simulations suggests that the evolution of magnetic domains in rectangular injection pads depends on the relative orientation of closure domains in the remanent state. The magnetization reversal pathway is also altered by the inclusion of transverse magnetic fields. These different modes explain previous results of domain wall injection into nanowires. Even more striking was the observation of domain walls injecting halfway across the width of wider (>400 nm wide) wires but over wire lengths of several micrometers. These extended Neel walls can interact with adjacent nanowires and cause a switching in the side of the wire undergoing reversal as the domain wall continues to expand.
Date: March 12, 2010
Creator: Bryan, M. T.; Fry, P. W.; Schrefl, T.; Gibbs, M. R. J.; Allwood, D. A.; Im, M.-Y. et al.
System: The UNT Digital Library
Essential Services Meeting Summary (open access)

Essential Services Meeting Summary

This summary of proceedings report focuses on an end-of-grant meeting at which grantees for Project Area 5 were convened.
Date: March 1, 2010
Creator: CHE, HCTT
System: The UNT Digital Library
Microstructural analyses of Cr(VI) speciation in chromite ore processing Residue (COPR) (open access)

Microstructural analyses of Cr(VI) speciation in chromite ore processing Residue (COPR)

The speciation and distribution of Cr(VI) in the solid phase was investigated for two types of chromite ore processing residue (COPR) found at two deposition sites in the United States: gray-black (GB) granular and hard brown (HB) cemented COPR. COPR chemistry and mineralogy were investigated using micro-X-ray absorption spectroscopy and micro-X-ray diffraction, complemented by laboratory analyses. GB COPR contained 30percent of its total Cr(VI) (6000 mg/kg) as large crystals(>20 ?m diameter) of a previously unreported Na-rich analog of calcium aluminum chromate hydrates. These Cr(VI)-rich phases are thought to be vulnerable to reductive and pH treatments. More than 50percent of the Cr(VI) was located within nodules, not easily accessible to dissolved reductants, and bound to Fe-rich hydrogarnet, hydrotalcite, and possibly brucite. These phases are stable over a large pH range, thus harder to dissolve. Brownmilleritewasalso likely associated with physical entrapment of Cr(VI) in the interior of nodules. HB COPR contained no Cr(VI)-rich phases; all Cr(VI) was diffuse within the nodules and absent from the cementing matrix, with hydrogarnet and hydrotalcite being the main Cr(VI) binding phases. Treatment ofHBCOPRis challenging in terms of dissolving the acidity-resistant, inaccessible Cr(VI) compounds; the same applies to ~;;50percent of Cr(VI) in GB COPR.
Date: March 1, 2010
Creator: CHRYSOCHOOU, MARIA; FAKRA, SIRINE C .; Marcus, Matthew A.; Moon, Deok Hyun & Dermatas, Dimitris
System: The UNT Digital Library
Model-Based Detection of Radioactive Contraband for Harbor Defense Incorporating Compton Scattering Physics (open access)

Model-Based Detection of Radioactive Contraband for Harbor Defense Incorporating Compton Scattering Physics

The detection of radioactive contraband is a critical problem is maintaining national security for any country. Photon emissions from threat materials challenge both detection and measurement technologies especially when concealed by various types of shielding complicating the transport physics significantly. This problem becomes especially important when ships are intercepted by U.S. Coast Guard harbor patrols searching for contraband. The development of a sequential model-based processor that captures both the underlying transport physics of gamma-ray emissions including Compton scattering and the measurement of photon energies offers a physics-based approach to attack this challenging problem. The inclusion of a basic radionuclide representation of absorbed/scattered photons at a given energy along with interarrival times is used to extract the physics information available from the noisy measurements portable radiation detection systems used to interdict contraband. It is shown that this physics representation can incorporated scattering physics leading to an 'extended' model-based structure that can be used to develop an effective sequential detection technique. The resulting model-based processor is shown to perform quite well based on data obtained from a controlled experiment.
Date: March 2, 2010
Creator: Candy, J V; Chambers, D H; Breitfeller, E F; Guidry, B L; Verbeke, J M; Axelrod, M A et al.
System: The UNT Digital Library
Assembly of 500,000 inter-specific catfish expressed sequence tags and large scale gene-associated marker development for whole genome association studies (open access)

Assembly of 500,000 inter-specific catfish expressed sequence tags and large scale gene-associated marker development for whole genome association studies

Background-Through the Community Sequencing Program, a catfish EST sequencing project was carried out through a collaboration between the catfish research community and the Department of Energy's Joint Genome Institute. Prior to this project, only a limited EST resource from catfish was available for the purpose of SNP identification. Results-A total of 438,321 quality ESTs were generated from 8 channel catfish (Ictalurus punctatus) and 4 blue catfish (Ictalurus furcatus) libraries, bringing the number of catfish ESTs to nearly 500,000. Assembly of all catfish ESTs resulted in 45,306 contigs and 66,272 singletons. Over 35percent of the unique sequences had significant similarities to known genes, allowing the identification of 14,776 unique genes in catfish. Over 300,000 putative SNPs have been identified, of which approximately 48,000 are high-quality SNPs identified from contigs with at least four sequences and the minor allele presence of at least two sequences in the contig. The EST resource should be valuable for identification of microsatellites, genome annotation, large-scale expression analysis, and comparative genome analysis. Conclusions-This project generated a large EST resource for catfish that captured the majority of the catfish transcriptome. The parallel analysis of ESTs from two closely related Ictalurid catfishes should also provide powerful means for the …
Date: March 23, 2010
Creator: Catfish Genome Consortium
System: The UNT Digital Library
Large Data Visualization on Distributed Memory Mulit-GPU Clusters (open access)

Large Data Visualization on Distributed Memory Mulit-GPU Clusters

Data sets of immense size are regularly generated on large scale computing resources. Even among more traditional methods for acquisition of volume data, such as MRI and CT scanners, data which is too large to be effectively visualization on standard workstations is now commonplace. One solution to this problem is to employ a 'visualization cluster,' a small to medium scale cluster dedicated to performing visualization and analysis of massive data sets generated on larger scale supercomputers. These clusters are designed to fit a different need than traditional supercomputers, and therefore their design mandates different hardware choices, such as increased memory, and more recently, graphics processing units (GPUs). While there has been much previous work on distributed memory visualization as well as GPU visualization, there is a relative dearth of algorithms which effectively use GPUs at a large scale in a distributed memory environment. In this work, we study a common visualization technique in a GPU-accelerated, distributed memory setting, and present performance characteristics when scaling to extremely large data sets.
Date: March 1, 2010
Creator: Childs, Henry R.
System: The UNT Digital Library
Visualization and Analysis-Oriented Reconstruction of Material Interfaces (open access)

Visualization and Analysis-Oriented Reconstruction of Material Interfaces

Reconstructing boundaries along material interfaces from volume fractions is a difficult problem, especially because the under-resolved nature of the input data allows for many correct interpretations. Worse, algorithms widely accepted as appropriate for simulation are inappropriate for visualization. In this paper, we describe a new algorithm that is specifically intended for reconstructing material interfaces for visualization and analysis requirements. The algorithm performs well with respect to memory footprint and execution time, has desirable properties in various accuracy metrics, and also produces smooth surfaces with few artifacts, even when faced with more than two materials per cell.
Date: March 5, 2010
Creator: Childs, Henry R.
System: The UNT Digital Library
Three-Dimensional Magnetohydrodynamic Simulation of Slapper Initiation Systems (open access)

Three-Dimensional Magnetohydrodynamic Simulation of Slapper Initiation Systems

Although useful information can be gleaned from 2D and even 1D simulations of slapper type initiation systems, these systems are inherently three-dimensional and therefore require full 3D representation to model all relevant details. Further, such representation provides additional insight into optimizing the design of such devices from a first-principles perspective and can thereby reduce experimental costs. We discuss in this paper several ongoing efforts in modeling these systems, our pursuit of validation, and extension of these methods to other systems. Our results show the substantial dependence upon highly accurate global equations of state and resistivity models in these analyses.
Date: March 9, 2010
Creator: Christensen, J S & Hrousis, C A
System: The UNT Digital Library