Resource Type

Month

6 Matching Results

Results open in a new window/tab.

FPGA Based Real-time Network Traffic Analysis using Traffic Dispersion Patterns (open access)

FPGA Based Real-time Network Traffic Analysis using Traffic Dispersion Patterns

The problem of Network Traffic Classification (NTC) has attracted significant amount of interest in the research community, offering a wide range of solutions at various levels. The core challenge is in addressing high amounts of traffic diversity found in today's networks. The problem becomes more challenging if a quick detection is required as in the case of identifying malicious network behavior or new applications like peer-to-peer traffic that have potential to quickly throttle the network bandwidth or cause significant damage. Recently, Traffic Dispersion Graphs (TDGs) have been introduced as a viable candidate for NTC. The TDGs work by forming a network wide communication graphs that embed characteristic patterns of underlying network applications. However, these patterns need to be quickly evaluated for mounting real-time response against them. This paper addresses these concerns and presents a novel solution for real-time analysis of Traffic Dispersion Metrics (TDMs) in the TDGs. We evaluate the dispersion metrics of interest and present a dedicated solution on an FPGA for their analysis. We also present analytical measures and empirically evaluate operating effectiveness of our design. The mapped design on Virtex-5 device can process 7.4 million packets/second for a TDG comprising of 10k flows at very high accuracies …
Date: March 26, 2010
Creator: Khan, F.; Gokhale, M. & Chuah, C. N.
System: The UNT Digital Library
Calibration of the Total Carbon Column Observing Network using Aircraft Profile Data (open access)

Calibration of the Total Carbon Column Observing Network using Aircraft Profile Data

The Total Carbon Column Observing Network (TCCON) produces precise measurements of the column average dry-air mole fractions of CO{sub 2}, CO, CH{sub 4}, N{sub 2}O and H{sub 2}O at a variety of sites worldwide. These observations rely on spectroscopic parameters that are not known with sufficient accuracy to compute total columns that can be used in combination with in situ measure ments. The TCCON must therefore be calibrated to World Meteorological Organization (WMO) in situ trace gas measurement scales. We present a calibration of TCCON data using WMO-scale instrumentation aboard aircraft that measured profiles over four TCCON stations during 2008 and 2009. The aircraft campaigns are the Stratosphere-Troposphere Analyses of Regional Transport 2008 (START-08), which included a profile over the Park Falls site, the HIAPER Pole-to-Pole Observations (HIPPO-1) campaign, which included profiles over the Lamont and Lauder sites, a series of Learjet profiles over the Lamont site, and a Beechcraft King Air profile over the Tsukuba site. These calibrations are compared with similar observations made during the INTEX-NA (2004), COBRA-ME (2004) and TWP-ICE (2006) campaigns. A single, global calibration factor for each gas accurately captures the TCCON total column data within error.
Date: March 26, 2010
Creator: Wunch, Debra; Toon, Geoffrey C.; Wennberg, Paul O.; Wofsy, Steven C.; Stephens, Britton B.; Fischer, Marc L. et al.
System: The UNT Digital Library
Calcifying Cyanobacteria - The Potential of Biomineralization for Carbon Capture and Storage (open access)

Calcifying Cyanobacteria - The Potential of Biomineralization for Carbon Capture and Storage

Employment of cyanobacteria in biomineralization of carbon dioxide by calcium carbonate precipitation offers novel and self-sustaining strategies for point-source carbon capture and sequestration. Although details of this process remain to be elucidated, a carbon-concentrating mechanism, and chemical reactions in exopolysaccharide or proteinaceous surface layers are assumed to be of crucial importance. Cyanobacteria can utilize solar energy through photosynthesis to convert carbon dioxide to recalcitrant calcium carbonate. Calcium can be derived from sources such as gypsum or industrial brine. A better understanding of the biochemical and genetic mechanisms that carry out and regulate cynaobacterial biomineralization should put us in a position where we can further optimize these steps by exploiting the powerful techniques of genetic engineering, directed evolution, and biomimetics.
Date: March 26, 2010
Creator: Jansson, Christer G. & Northen, Trent
System: The UNT Digital Library
Integrated Nucleosynthesis in Neutrino Driven Winds (open access)

Integrated Nucleosynthesis in Neutrino Driven Winds

Although they are but a small fraction of the mass ejected in core-collapse supernovae, neutrino-driven winds (NDWs) from nascent proto-neutron stars (PNSs) have the potential to contribute significantly to supernova nucleosynthesis. In previous works, the NDW has been implicated as a possible source of r-process and light p-process isotopes. In this paper we present time-dependent hydrodynamic calculations of nucleosynthesis in the NDW which include accurate weak interaction physics coupled to a full nuclear reaction network. Using two published models of PNS neutrino luminosities, we predict the contribution of the NDW to the integrated nucleosynthetic yield of the entire supernova. For the neutrino luminosity histories considered, no true r-process occurs in the most basic scenario. The wind driven from an older 1.4M{sub {circle_dot}} model for a PNS is moderately neutron-rich at late times however, and produces {sup 87}Rb, {sup 88}Sr, {sup 89}Y, and {sup 90}Zr in near solar proportions relative to oxygen. The wind from a more recently studied 1.27M{sub {circle_dot}} PNS is proton-rich throughout its entire evolution and does not contribute significantly to the abundance of any element. It thus seems very unlikely that the simplest model of the NDW can produce the r-process. At most, it contributes to the …
Date: March 26, 2010
Creator: Roberts, L F; Woosley, S E & Hoffman, R D
System: The UNT Digital Library
RESPONSE OF ALUMINUM SPHERES IN SITU TO DETONATION (open access)

RESPONSE OF ALUMINUM SPHERES IN SITU TO DETONATION

Time sequence x-ray imaging was utilized to determine the response of aluminum spheres embedded in a detonating high-explosive cylinder. The size of these spheres ranged from 3/8-inch to 1/32-inch in diameter. These experiments directly observed the response of the spheres as a function of time after interaction with the detonation wave. As the spheres are entrained in the post-detonation flow field, they are accelerating and their velocity profile is complicated, but can be determined from the radiography. Using the aluminum spheres as tracers, radial velocities of order 1.6 mm/us and horizontal velocities of order 0.08 mm/us were measured at early times post detonation. In terms of response, these data show that the largest sphere deforms and fractures post detonation. The intermediate size spheres suffer negligible deformation, but appear to ablate post detonation. Post detonation, the smallest spheres either react, mechanically disintegrate, atomize as a liquid or some combination of these.
Date: March 26, 2010
Creator: Molitoris, J D; Garza, R G; Tringe, J W; Batteux, J D; Wong, B M; Villafana, R J et al.
System: The UNT Digital Library
Near infrared spectral imaging of explosives using a tunable laser source (open access)

Near infrared spectral imaging of explosives using a tunable laser source

Diffuse reflectance near infrared hyperspectral imaging is an important analytical tool for a wide variety of industries, including agriculture consumer products, chemical and pharmaceutical development and production. Using this technique as a method for the standoff detection of explosive particles is presented and discussed. The detection of the particles is based on the diffuse reflectance of light from the particle in the near infrared wavelength range where CH, NH, OH vibrational overtones and combination bands are prominent. The imaging system is a NIR focal plane array camera with a tunable OPO/laser system as the illumination source. The OPO is programmed to scan over a wide spectral range in the NIR and the camera is synchronized to record the light reflected from the target for each wavelength. The spectral resolution of this system is significantly higher than that of hyperspectral systems that incorporate filters or dispersive elements. The data acquisition is very fast and the entire hyperspectral cube can be collected in seconds. A comparison of data collected with the OPO system to data obtained with a broadband light source with LCTF filters is presented.
Date: March 26, 2010
Creator: Klunder, G. L.; Margalith, E. & Nguyen, L. K.
System: The UNT Digital Library