Resource Type

153 Matching Results

Results open in a new window/tab.

2008 Photoions, Photoionization & Photodetachment Gordon Research Conference January 27-February 1, 2008 (open access)

2008 Photoions, Photoionization & Photodetachment Gordon Research Conference January 27-February 1, 2008

This conference brings together scientists interested in a range of basic phenomena linked to the ejection and scattering of electrons from atoms, molecules, clusters, liquids and solids by absorption of light. Photoionization, a highly sensitive probe of both structure and dynamics, can range from perturbative single-photon processes to strong-field highly non-perturbative interactions. It is responsible for the formation and destruction of molecules in astrophysical and plasma environments and successfully used in advanced analytical techniques. Positive ions, which can be produced and studied most effectively using photoionization, are the major components of all plasmas, vital constituents of flames and important intermediates in many chemical reactions. Negative ions are significant as transient species and, when photodetached, the corresponding neutral species often undergoes remarkable, otherwise non-observable, dynamics. The scope of the meeting spans from novel observations in atomic and molecular physics, such as Coulomb Crystals, highly excited states and cold Rydberg plasmas, to novel energy resolved or ultrafast time-resolved experiments, photoionization in strong laser fields, theoretical method development for electron scattering, photoionization and photodetachment and more complex phenomena such as charge transfer and DNA and protein conductivity, important for biological and analytical applications.
Date: March 31, 2009
Creator: GRay, Klaus Muller-Dethefs Nancy Ryan
System: The UNT Digital Library
Exact Lattice Supersymmetry (open access)

Exact Lattice Supersymmetry

We provide an introduction to recent lattice formulations of supersymmetric theories which are invariant under one or more real supersymmetries at nonzero lattice spacing. These include the especially interesting case of N = 4 SYM in four dimensions. We discuss approaches based both on twisted supersymmetry and orbifold-deconstruction techniques and show their equivalence in the case of gauge theories. The presence of an exact supersymmetry reduces and in some cases eliminates the need for fine tuning to achieve a continuum limit invariant under the full supersymmetry of the target theory. We discuss open problems.
Date: March 31, 2009
Creator: Catterall, Simon; Kaplan, David B. & Unsal, Mithat
System: The UNT Digital Library
FLASH Beam-Off RF Measurements and Analyses (open access)

FLASH Beam-Off RF Measurements and Analyses

The FLASH L-band (1.3 GHz) superconducting accelerator facility at DESY has a Low Level RF (LLRF) system that is similar to that envisioned for ILC. This system has extensive monitoring capability and was used to gather performance data relevant to ILC. In particular, waveform data were recorded with beam off for three, 8-cavity cryomodules to evaluate the input rf stability, perturbations to the SC cavity frequencies and the rf overhead required to achieve constant gradient during the 800-s pulses. In this paper, we discuss the measurements and data analysis procedures and present key findings on the pulse-to-pulse input rf and cavity field stability.
Date: March 31, 2009
Creator: Pei, Shilun; Adolphsen, Chris & Carwardine, John
System: The UNT Digital Library
Integrated analysis of breast cancer cell lines reveals unique signaling pathways (open access)

Integrated analysis of breast cancer cell lines reveals unique signaling pathways

Cancer is a heterogeneous disease resulting from the accumulation of genetic defects that negatively impact control of cell division, motility, adhesion and apoptosis. Deregulation in signaling along the EGFR-MAPK pathway is common in breast cancer, though the manner in which deregulation occurs varies between both individuals and cancer subtypes. We were interested in identifying subnetworks within the EGFR-MAPK pathway that are similarly deregulated across subsets of breast cancers. To that end, we mapped genomic, transcriptional and proteomic profiles for 30 breast cancer cell lines onto a curated Pathway Logic symbolic systems model of EGFR-MEK signaling. This model was comprised of 539 molecular states and 396 rules governing signaling between active states. We analyzed these models and identified several subtype specific subnetworks, including one that suggested PAK1 is particularly important in regulating the MAPK cascade when it is over-expressed. We hypothesized that PAK1 overexpressing cell lines would have increased sensitivity to MEK inhibitors. We tested this experimentally by measuring quantitative responses of 20 breast cancer cell lines to three MEK inhibitors. We found that PAK1 over-expressing luminal breast cancer cell lines are significantly more sensitive to MEK inhibition as compared to those that express PAK1 at low levels. This indicates that …
Date: March 31, 2009
Creator: Heiser, Laura M.; Wang, Nicholas J.; Talcott, Carolyn L.; Laderoute, Keith R.; Knapp, Merrill; Guan, Yinghui et al.
System: The UNT Digital Library
Multiflavor QCD* on R_3 * S_1: Studying Transition From Abelian to Non-Abelian Confinement (open access)

Multiflavor QCD* on R_3 * S_1: Studying Transition From Abelian to Non-Abelian Confinement

The center-stabilized multiflavor QCD* theories formulated on R{sub 3} x S{sub 1} exhibit both Abelian and non-Abelian confinement as a function of the S{sub 1} radius, similar to the Seiberg-Witten theory as a function of the mass deformation parameter. For sufficiently small number of flavors and small r(S{sub 1}), we show occurrence of a mass gap in gauge fluctuations, and linear confinement. This is a regime of confinement without continuous chiral symmetry breaking ({chi}SB). Unlike one-flavor theories where there is no phase transition in r(S{sub 1}), the multiflavor theories possess a single phase transition associated with breaking of the continuous {chi}S. We conjecture that the scale of the {chi}SB is parametrically tied up with the scale of Abelian to non-Abelian confinement transition.
Date: March 31, 2009
Creator: Shifman, M.; /Minnesota U., Theor. Phys. Inst.; Unsal, M. & /SLAC /Stanford U., Phys. Dept.
System: The UNT Digital Library
Progress on laser plasma accelerator development using transverselyand longitudinally shaped plasmas (open access)

Progress on laser plasma accelerator development using transverselyand longitudinally shaped plasmas

A summary of progress at Lawrence Berkeley National Laboratory is given on: (1) experiments on down-ramp injection; (2) experiments on acceleration in capillary discharge plasma channels; and (3) simulations of a staged laser wakefield accelerator (LWFA). Control of trapping in a LWFA using plasma density down-ramps produced electron bunches with absolute longitudinal and transverse momentum spreads more than ten times lower than in previous experiments (0.17 and 0.02 MeV Ic FWHM, respectively) and with central momenta of 0.76 +- 0.02 MeV Ic, stable over a week of operation. Experiments were also carried out using a 40 TW laser interacting with a hydrogen-filled capillary discharge waveguide. For a 15 mm long, 200 mu m diameter capillary, quasi-monoenergetic bunches up to 300 MeV were observed. By detuning discharge delay from optimum guiding performance, self-trapping was found to be stabilized. For a 33 mm long, 300 mu m capillary, a parameter regime with high energy bunches, up to 1 Ge V, was found. In this regime, peak electron energy was correlated with the amount of trapped charge. Simulations show that bunches produced on a down-ramn and iniected into a channel-guided LWFA can produce stable beams with 0.2 MeV Ic-class momentum spread at high …
Date: March 31, 2009
Creator: Leemans, Wim P.; Esarey, E.; Geddes, C.G.R.; Toth, Cs.; Schroeder, C.B.; Nakamura, K. et al.
System: The UNT Digital Library
Relating D0-anti-D0 Mixing and D0 -> l l- with New Physics (open access)

Relating D0-anti-D0 Mixing and D0 -> l l- with New Physics

We point out how, in certain models of New Physics, the same combination of couplings occurs in the amplitudes for both D{sup 0}-{bar D}{sup 0} mixing and the rare decays D{sup 0} {yields} {ell}{sup +}{ell}{sup -}. If the New Physics dominates and is responsible for the observed mixing, then a very simple correlation exists between the magnitudes of each; in fact the rates for the decay D{sup 0} {yields} {ell}{sup +}{ell}{sup -} are completely fixed by the mixing. Observation of D{sup 0} {yields} {ell}{sup +}{ell}{sup -} in excess of the Standard Model prediction could identify New Physics contributions to D{sup 0}-{bar D}{sup 0} mixing.
Date: March 31, 2009
Creator: Golowich, Eugene; Hewett, JoAnne; Pakvasa, Sandip & Petrov, Alexey A.
System: The UNT Digital Library
Thermodynamics of the Complexation of Uranium(VI) by oxalate in aqueous solution at 10-70oC (open access)

Thermodynamics of the Complexation of Uranium(VI) by oxalate in aqueous solution at 10-70oC

The protonation reactions of oxalate (ox) and the complex formation of uranium(VI) with oxalate in 1.05 mol kg{sup -1} NaClO{sub 4} were studied at variable temperatures (10-70 C). Three U(VI)/ox complexes (UO{sub 2}ox{sub j}{sup (2-2j){sup +}} with j = 1, 2, 3) were identified in this temperature range. The formation constants and the molar enthalpies of complexation were determined by spectrophotometry and calorimetry. The complexation of uranium(VI) with oxalate ion is exothermic at lower temperatures (10-40 C) and becomes endothermic at higher temperatures (55-70 C). In spite of this, the free energy of complexation becomes more negative at higher temperatures due to increasingly more positive entropy of complexation that exceeds the increase of the enthalpy of complexation. The thermodynamic parameters at different temperatures, in conjunction with the literature data for other dicarboxylic acids, provide insight into the relative strength of U(VI) complexes with a series of dicarboxylic acids (oxalic, malonic and oxydiacetic) and rationalization for the highest stability of U(VI)/oxalate complexes in the series. The data reported in this study are of importance in predicting the migration of uranium(VI) in geological environments in the case of failure of the engineering barriers which protect waste repositories.
Date: March 31, 2009
Creator: Di Bernardo, Plinio; Zanonato, Pier Luigi; Tian, Guoxin; Tolazzi, Marilena & Rao, Linfeng
System: The UNT Digital Library
Timelike Virtual Compton Scattering from Electron-Positron Radiative Annihilation (open access)

Timelike Virtual Compton Scattering from Electron-Positron Radiative Annihilation

We propose measurements of the deeply virtual Compton amplitude (DVCS) {gamma}* {yields} H{bar H}{gamma} in the timelike t = (p{sub H} + p{sub {bar H}}){sup 2} > 0 kinematic domain which is accessible at electron-positron colliders via the radiative annihilation process e{sup +}e{sup -} {yields} H{bar H}{gamma}. These processes allow the measurement of timelike deeply virtual Compton scattering for a variety of H{bar H} hadron pairs such as {pi}{sup +}{pi}{sup -}, K{sup +}K{sup -}, and D{bar D} as well as p{bar p}. As in the conventional spacelike DVCS, there are interfering coherent amplitudes contributing to the timelike processes involving C = - form factors. The interference between the amplitudes measures the phase of the C = + timelike DVCS amplitude relative to the phase of the timelike form factors and can be isolated by considering the forward-backward e{sup +} {leftrightarrow} e{sup -} asymmetry. The J = 0 fixed pole contribution which arises from the local coupling of the two photons to the quark current plays a special role. As an example we present a simple model.
Date: March 31, 2009
Creator: Afanasev, Andrei; Brodsky, Stanley J.; Carlson, Carl E. & Mukherjee, Asmita
System: The UNT Digital Library
Looking for Darwin's footprints in the microbial world (open access)

Looking for Darwin's footprints in the microbial world

As we observe the 200th anniversary of Charles Darwin's birthday, microbiologists interested in the application of Darwin's ideas to the microscopic world have a lot to celebrate: an emerging picture of the (mostly microbial) Tree of Life at ever-increasing resolution, an understanding of horizontal gene transfer as a driving force in the evolution of microbes, and thousands of complete genome sequences to help formulate and refine our theories. At the same time, quantitative models of the microevolutionary processes shaping microbial populations remain just out of reach, a point that is perhaps most dramatically illustrated by the lack of consensus on how (or even whether) to define bacterial species. We summarize progress and prospects in bacterial population genetics, with an emphasis on detecting the footprint of positive Darwinian selection in microbial genomes.
Date: March 30, 2009
Creator: Shapiro, B. Jesse; David, Lawrence A.; Friedman, Jonathan & Alm, Eric J.
System: The UNT Digital Library
Next-to-Leading Order Calculation of the Single Transverse Spin Asymmetry in the Drell-Yan Process (open access)

Next-to-Leading Order Calculation of the Single Transverse Spin Asymmetry in the Drell-Yan Process

We calculate the next-to-leading order perturbative QCD corrections to the transverse momentum weighted single transverse spin asymmetry in Drell-Yan lepton pair production in hadronic collisions. We identify the splitting function relevant for the scale evolution of the twist-three quark-gluon correlation function. We comment on the consequences of our results for phenomenology.
Date: March 30, 2009
Creator: Vogelsang, Werner & Yuan, Feng
System: The UNT Digital Library
Pyramidal and Chiral Groupings of Gold Nanocrystals Assembled Using DNA Scaffolds (open access)

Pyramidal and Chiral Groupings of Gold Nanocrystals Assembled Using DNA Scaffolds

Nanostructures constructed from metal and semiconductor nanocrystals conjugated to, and organized by DNA are an emerging class of material with collective optical properties. We created discrete pyramids of DNA with gold nanocrystals at the tips. By taking small angle X-ray scattering (SAXS) measurments from solutions of these pyramids we confirmed that this pyramidal geometry creates structures which are more rigid in solution than linear DNA. We then took advantage of the tetrahedral symmetry to demonstrate construction of chiral nanostructures.
Date: March 30, 2009
Creator: Mastroianni, Alexander; Claridge, Shelley & Alivisatos, A. Paul
System: The UNT Digital Library
Quarkyonic Matter and the Revised Phase Diagram of QCD (open access)

Quarkyonic Matter and the Revised Phase Diagram of QCD

At high baryon number density, it has been proposed that a new phase of QCD matter controlsthe physics. This matter is confining but can have densities much larger than 3QCD. Its existenceis argued from large Nc approximations, and model computations. It is approximately chirallysymmetric.
Date: March 30, 2009
Creator: McLerran, L.
System: The UNT Digital Library
Surfactant-Assisted Hydrothermal Synthesis of Single Phase Pyrite FeS2 Nanocrystals (open access)

Surfactant-Assisted Hydrothermal Synthesis of Single Phase Pyrite FeS2 Nanocrystals

Iron pyrite nanocrystals with high purity have been synthesized through a surfactant-assisted hydrothermal reaction under optimum pH value. These pyrite nanocrystals represent a new group of well-defined nanoscale structures for high-performance photovoltaic solar cells based on non-toxic and earth abundant materials.
Date: March 27, 2009
Creator: Wadia, Cyrus; Wu, Yue; Gul, Sheraz; Volkman, Steven; Guo, Jinghua & Alivisatos, Paul
System: The UNT Digital Library
Collins Fragmentation and the Single Transverse Spin Asymmetry (open access)

Collins Fragmentation and the Single Transverse Spin Asymmetry

We study the Collins mechanism for the single transverse spin asymmetry in the collinear factorization approach. The correspondent twist-three fragmentation function is identified. We show that the Collins function calculated in this approach is universal.We further examine its contribution to the single transverse spin asymmetry of semi-inclusive hadron production in deep inelastic scattering and demonstrate that the transverse momentum dependent and twist-three collinear approaches are consistent in the intermediate transverse momentum region where both apply.
Date: March 26, 2009
Creator: Yuan, Feng & Zhou, Jian
System: The UNT Digital Library
Axial-Torsion Testing Plastic-Bonded Explosives to Failure (open access)

Axial-Torsion Testing Plastic-Bonded Explosives to Failure

None
Date: March 25, 2009
Creator: Gagliardi, F J & Cunningham, B J
System: The UNT Digital Library
Domain-wall oscillations studies by time-resolved soft x-ray mircorscopy (open access)

Domain-wall oscillations studies by time-resolved soft x-ray mircorscopy

Fast magnetization dynamics in the micro- and nanometer regime are an interesting field of research. On these length scales magnetic structures can be designed to contain a single vortex or a single domain wall. Both size and speed of these patterns are of great interest in todays research for prospective non-volatile data storage devices. Especially the possibility to move domain-walls by spin-polarized current gained a lot of interest. Magnetic configurations can be imaged by soft X-ray magnetic microscopy with a spatial resolution down to 15 nm. By a stroboscopic pump and probe measurement scheme a temporal resolution below 100 ps is achieved. This provides the opportunity to directly image changes in magnetic domains and domain-wall motion. We image oscillations of a single domain wall in a confining potential in time steps of 200 ps by time resolved X-ray microscopy at the full-field soft X-ray transmission microscope at the Advanced Light Source in Berkeley (beamline 6.1.2). Domain walls are prepared in permalloy nanostructures with a restoring potential. The oscillation of a 180{sup o} domain wall is triggered by nanosecond current pulses. The spin-polarized current and the accompanying Oersted field can contribute to the motion of the wall. By analysis of the …
Date: March 25, 2009
Creator: Bocklage, L.; Kruger, B.; Eiselt, R.; Bolte, M.; Fischer, P. & Meier, G.
System: The UNT Digital Library
Influence of ammonium availability on expression of nifD and amtB genes during biostimulation of a U(VI) contaminated aquifer: implications for U(VI) removal and monitoring the metabolic state of Geobacteraceae (open access)

Influence of ammonium availability on expression of nifD and amtB genes during biostimulation of a U(VI) contaminated aquifer: implications for U(VI) removal and monitoring the metabolic state of Geobacteraceae

The influence of ammonium availability on bacterial community structure and the physiological status of Geobacter species during in situ bioremediation of uranium-contaminated groundwater was evaluated. Ammonium concentrations varied by 2 orders of magnitude (<4 to 400 ?M) across the study site. Analysis of 16S rRNA sequences suggested that ammonium may have been one factor influencing the community composition prior to acetate amendment with Rhodoferax species predominating over Geobacter species with higher ammonium and Dechloromonas species dominating at the site with lowest ammonium. However, once acetate was added and dissimilatory metal reduction was stimulated, Geobacter species became the predominant organisms at all locations. Rates of U(VI) reduction appeared to be more related to acetate concentrations rather than ammonium levels. In situ mRNA transcript abundance of the nitrogen fixation gene, nifD, and the ammonium transporter gene, amtB, in Geobacter species indicated that ammonium was the primary source of nitrogen during uranium reduction. The abundance of amtB was inversely correlated to ammonium levels, whereas nifD transcript levels were similar across all sites examined. These results suggest that nifD and amtB expression are closely regulated in response to ammonium availability to ensure an adequate supply of nitrogen while conserving cell resources. Thus, quantifying nifD …
Date: March 25, 2009
Creator: Mouser, Paula J.; N'Guessan, A. Lucie; Elifantz, Hila; Holmes, Dawn E.; Williams, Kenneth H; Wilkins, Michael J. et al.
System: The UNT Digital Library
CZT Virtual Frisch-grid Detector: Principles and Applications (open access)

CZT Virtual Frisch-grid Detector: Principles and Applications

Cadmium Zinc Telluride (CdZnTe or CZT) is a very attractive material for using as room-temperature semiconductor detectors, because it has a wide bandgap and a high atomic number. However, due to the material's poor hole mobility, several special techniques were developed to ensure its suitability for radiation detection. Among them, the virtual Frisch-grid CZT detector is an attractive option, having a simple configuration, yet delivering an outstanding spectral performance. The goal of our group in Brookhaven National Laboratory (BNL) is to improve the performance of Frisch-ring CZT detectors; most recently, that effort focused on the non-contacting Frisch-ring detector, allowing us to build an inexpensive, large-volume detector array with high energy-resolution and a large effective area. In this paper, the principles of virtual Frisch-grid detectors are described, especially BNL's innovative improvements. The potential applications of virtual Frisch-grid detectors are discussed, and as an example, a hand-held gamma-ray spectrometer using a CZT virtual Frischgrid detector array is introduced, which is a self-contained device with a radiation detector, readout circuit, communication circuit, and high-voltage supply. It has good energy resolution of 1.4% (FWHM of 662-keV peak) with a total detection volume of {approx}20 cm{sup 3}. Such a portable inexpensive device can be used …
Date: March 24, 2009
Creator: Cui,Y.; Bolotnikov, A.; Camarda, G.; Hossain, A. & James, R. B.
System: The UNT Digital Library
A dedicated superbend x-ray microdiffraction beamline for materials, geo-, and environmental sciences at the advanced light source (open access)

A dedicated superbend x-ray microdiffraction beamline for materials, geo-, and environmental sciences at the advanced light source

A new facility for microdiffraction strain measurements and microfluorescence mapping has been built on beamline 12.3.2 at the advanced light source of the Lawrence Berkeley National Laboratory. This beamline benefits from the hard x-radiation generated by a 6 T superconducting bending magnet (superbend) This provides a hard x-ray spectrum from 5 to 22 keV and a flux within a 1 mu m spot of ~;;5x109 photons/ s (0.1percent bandwidth at 8 keV). The radiation is relayed from the superbend source to a focus in the experimental hutch by a toroidal mirror. The focus spot is tailored bytwo pairs of adjustable slits, which serve as secondary source point. Inside the lead hutch, a pair of Kirkpatrick-Baez (KB) mirrors placed in a vacuum tank refocuses the secondary slit source onto the sample position. A new KB-bending mechanism with active temperature stabilization allows for more reproducible and stable mirror bending and thus mirror focusing. Focus spots around 1 um are routinely achieved and allow a variety of experiments, which have in common the need of spatial resolution. The effective spatial resolution (~;;0.2 mu m) is limited by a convolution of beam size, scan-stage resolution, and stage stability. A four-bounce monochromator consisting of two …
Date: March 24, 2009
Creator: Lawrence Berkeley National Laboratory. Advanced Light Source.
System: The UNT Digital Library
Harnessing microbial subsurface metal reduction activities to synthesise nanoscale cobalt ferrite with enhanced magnetic properties (open access)

Harnessing microbial subsurface metal reduction activities to synthesise nanoscale cobalt ferrite with enhanced magnetic properties

Nanoscale ferrimagnetic particles have a diverse range of uses from directed cancer therapy and drug delivery systems to magnetic recording media and transducers. Such applications require the production of monodisperse nanoparticles with well-controlled size, composition, and magnetic properties. To fabricate these materials purely using synthetic methods is costly in both environmental and economical terms. However, metal-reducing microorganisms offer an untapped resource to produce these materials. Here, the Fe(III)-reducing bacterium Geobacter sulfurreducens is used to synthesize magnetic iron oxide nanoparticles. A combination of electron microscopy, soft X-ray spectroscopy, and magnetometry techniques was employed to show that this method of biosynthesis results in high yields of crystalline nanoparticles with a narrow size distribution and magnetic properties equal to the best chemically synthesized materials. In particular, it is demonstrated here that cobalt ferrite (CoFe{sub 2}O{sub 4}) nanoparticles with low temperature coercivity approaching 8 kOe and an effective anisotropy constant of {approx} 10{sup 6} erg cm{sup -3} can be manufactured through this biotechnological route. The dramatic enhancement in the magnetic properties of the nanoparticles by the introduction of high quantities of Co into the spinel structure represents a significant advance over previous biomineralization studies in this area using magnetotactic bacteria. The successful production of …
Date: March 24, 2009
Creator: Coker, Victoria S.; Telling, Neil D.; van der Laan, Gerrit; Pattrick, Richard A.D.; Pearce, Carolyn I.; Arenholz, Elke et al.
System: The UNT Digital Library
Point Defect Characterization in CdZnTe (open access)

Point Defect Characterization in CdZnTe

Measurements of the defect levels and performance testing of CdZnTe detectors were performed by means of Current Deep Level Transient Spectroscopy (I-DLTS), Transient Charge Technique (TCT), Current versus Voltage measurements (I-V), and gamma-ray spectroscopy. CdZnTe crystals were acquired from different commercial vendors and characterized for their point defects. I-DLTS studies included measurements of defect parameters such as energy levels in the band gap, carrier capture cross sections, and defect densities. The induced current due to laser-generated carriers was measured using TCT. The data were used to determine the transport properties of the detectors under study. A good correlation was found between the point defects in the detectors and their performance.
Date: March 24, 2009
Creator: Gul, R.; Li, Z.; Bolotnikov, A.; Keeter, K.; Rodriguez, R. & James, R.
System: The UNT Digital Library
RAPID MEASUREMENTS OF NEPTUNIUM OXIDATION STATES USING CHROMATOGRAPHIC RESINS (open access)

RAPID MEASUREMENTS OF NEPTUNIUM OXIDATION STATES USING CHROMATOGRAPHIC RESINS

The Savannah River Site's (SRS) H-Canyon facility uses ceric ammonium nitrate (CAN) to separate impure neptunium (Np) from a high sulfate feed stream. The material is processed using a two-pass solvent extraction purification which relies on CAN to oxidize neptunium to Np(VI) during the first pass prior to extraction. Spectrophotometric oxidation-state analyses normally used to validate successful oxidation to Np(VI) prior to extraction were compromised by this feed stream matrix. Therefore, a rapid chromatographic method to validate successful Np oxidation was developed using Eichrom Industries TRU and TEVA{reg_sign} resins. The method was validated and subsequently transferred to existing operations in the process analytical laboratories.
Date: March 24, 2009
Creator: Diprete, D; C Diprete, C; Mira Malek, M & Eddie Kyser, E
System: The UNT Digital Library
Solubility of Phenanthrene in Binary Mixtures of C1 - C4 Alcohols + 2-Propanol and Ethanol + Methanol at 298.2 K (open access)

Solubility of Phenanthrene in Binary Mixtures of C1 - C4 Alcohols + 2-Propanol and Ethanol + Methanol at 298.2 K

Article discussing the solubility of phenanthrene in binary mixtures of C1 - C4 alcohols + 2-propanol and ethanol + methanol at 298.2 K.
Date: March 24, 2009
Creator: Fakhree, Mohammad Amin Abolghassemi; Shayanfar, Ali; Acree, William E. (William Eugene) & Jouyban, Abolghasem
System: The UNT Digital Library