Resource Type

153 Matching Results

Results open in a new window/tab.

Female Pilots Recognized (open access)

Female Pilots Recognized

Printed article about the Congressional Gold Medal being awarded to Women Airforce Service Pilots, featuring interview quotes from Catherine Parker on her feelings about the medal and her time in the WASP program.
Date: March 19, 2009
Creator: Phelps, Janet
System: The Portal to Texas History
High resolution fossil fuel combustion CO2 emission fluxes for the United States (open access)

High resolution fossil fuel combustion CO2 emission fluxes for the United States

Quantification of fossil fuel CO{sub 2} emissions at fine space and time resolution is emerging as a critical need in carbon cycle and climate change research. As atmospheric CO{sub 2} measurements expand with the advent of a dedicated remote sensing platform and denser in situ measurements, the ability to close the carbon budget at spatial scales of {approx}100 km{sup 2} and daily time scales requires fossil fuel CO{sub 2} inventories at commensurate resolution. Additionally, the growing interest in U.S. climate change policy measures are best served by emissions that are tied to the driving processes in space and time. Here we introduce a high resolution data product (the 'Vulcan' inventory: www.purdue.edu/eas/carbon/vulcan/) that has quantified fossil fuel CO{sub 2} emissions for the contiguous U.S. at spatial scales less than 100 km{sup 2} and temporal scales as small as hours. This data product, completed for the year 2002, includes detail on combustion technology and 48 fuel types through all sectors of the U.S. economy. The Vulcan inventory is built from the decades of local/regional air pollution monitoring and complements these data with census, traffic, and digital road data sets. The Vulcan inventory shows excellent agreement with national-level Department of Energy inventories, despite …
Date: March 19, 2009
Creator: Gurney, Kevin R.; Mendoza, Daniel L.; Zhou, Yuyu; Fischer, Marc L.; Miller, Chris C.; Geethakumar, Sarath et al.
System: The UNT Digital Library
Modeling preferential water flow and solute transport in unsaturated soil using the active region model (open access)

Modeling preferential water flow and solute transport in unsaturated soil using the active region model

Preferential flow and solute transport are common processes in the unsaturated soil, in which distributions of soil water content and solute concentrations are often characterized as fractal patterns. An active region model (ARM) was recently proposed to describe the preferential flow and transport patterns. In this study, ARM governing equations were derived to model the preferential soil water flow and solute transport processes. To evaluate the ARM equations, dye infiltration experiments were conducted, in which distributions of soil water content and Cl{sup -} concentration were measured. Predicted results using the ARM and the mobile-immobile region model (MIM) were compared with the measured distributions of soil water content and Cl{sup -} concentration. Although both the ARM and the MIM are two-region models, they are fundamental different in terms of treatments of the flow region. The models were evaluated based on the modeling efficiency (ME). The MIM provided relatively poor prediction results of the preferential flow and transport with negative ME values or positive ME values less than 0.4. On the contrary, predicted distributions of soil water content and Cl- concentration using the ARM agreed reasonably well with the experimental data with ME values higher than 0.8. The results indicated that the …
Date: March 15, 2009
Creator: Sheng, F.; Wang, K.; Zhang, R. & Liu, H.H.
System: The UNT Digital Library
Planarization of High Aspect Ratio P-I-N Diode Pillar Arrays for Blanket Electrical Contacts (open access)

Planarization of High Aspect Ratio P-I-N Diode Pillar Arrays for Blanket Electrical Contacts

Two planarization techniques for high aspect ratio three dimensional pillar structured P-I-N diodes have been developed in order to enable a continuous coating of metal on the top of the structures. The first technique allows for coating of structures with topography through the use of a planarizing photoresist followed by RIE etch back to expose the tops of the pillar structure. The second technique also utilizes photoresist, but instead allows for planarization of a structure in which the pillars are filled and coated with a conformal coating by matching the etch rate of the photoresist to the underlying layers. These techniques enable deposition using either sputtering or electron beam evaporation of metal films to allow for electrical contact to the tops of the underlying pillar structure. These processes have potential applications for many devices comprised of 3-D high aspect ratio structures. Two separate processes have been developed in order to ensure a uniform surface for deposition of an electrode on the {sup 10}Boron filled P-I-N pillar structured diodes. Each uses S1518 photoresist in order to achieve a relatively uniform surface despite the non-uniformity of the underlying detector. Both processes allow for metallization of the final structure and provide good electrical …
Date: March 5, 2009
Creator: Voss, L F; Shao, Q; Reinhardt, C E; Graff, R T; Conway, A M; Nikolic, R J et al.
System: The UNT Digital Library
High-resolution, high-transmission soft x-ray spectrometer for the study of biological samples (open access)

High-resolution, high-transmission soft x-ray spectrometer for the study of biological samples

We present a variable line-space grating spectrometer for soft x-rays that covers the photon energy range between 130 and 650 eV. The optical design is based on the Hettrick-Underwood principle and tailored to synchrotron-based studies of radiation-sensitive biological samples. The spectrometer is able to record the entire spectral range in one shot, i.e., without any mechanical motion, at a resolving power of 1200 or better. Despite its slitless design, such a resolving power can be achieved for a source spot as large as 30x3000 mu m2, which is important for keeping beam damage effects in radiation-sensitive samples low. The high spectrometer efficiency allows recording of comprehensive two-dimensional resonant inelastic soft x-ray scattering (RIXS) maps with good statistics within several minutes. This is exemplarily demonstrated for a RIXS map of highly oriented pyrolytic graphite, which was taken within 10 min.
Date: March 9, 2009
Creator: Fuchs, Oliver; Weinhardt, L.; Blum, M.; Weigand, M.; Umbach, E.; Bar, M. et al.
System: The UNT Digital Library
Multi-Modality Phantom Development (open access)

Multi-Modality Phantom Development

Multi-modality imaging has an increasing role in the diagnosis and treatment of a large number of diseases, particularly if both functional and anatomical information are acquired and accurately co-registered. Hence, there is a resulting need for multi modality phantoms in order to validate image co-registration and calibrate the imaging systems. We present our PET-ultrasound phantom development, including PET and ultrasound images of a simple prostate phantom. We use agar and gelatin mixed with a radioactive solution. We also present our development of custom multi-modality phantoms that are compatible with PET, transrectal ultrasound (TRUS), MRI and CT imaging. We describe both our selection of tissue mimicking materials and phantom construction procedures. These custom PET-TRUS-CT-MRI prostate phantoms use agargelatin radioactive mixtures with additional contrast agents and preservatives. We show multi-modality images of these custom prostate phantoms, as well as discuss phantom construction alternatives. Although we are currently focused on prostate imaging, this phantom development is applicable to many multi-modality imaging applications.
Date: March 20, 2009
Creator: Huber, Jennifer S.; Peng, Qiyu & Moses, William W.
System: The UNT Digital Library
[Article Mock-up on Helen Snapp] (open access)

[Article Mock-up on Helen Snapp]

Article mock-up with edits containing the story of Helen Wyatt Snapp's experience with WASP and flying the B-17F Memphis Belle. A portrait of Snapp and illustration of the plane are also included.
Date: March 2009
Creator: Snapp, Helen Wyatt
System: The Portal to Texas History
[Copy of an Article on Helen Snapp] (open access)

[Copy of an Article on Helen Snapp]

Article containing the story of Helen Wyatt Snapp, W.A.S.P. 43-w-4, her experience with WASP, and flying the B-17F Memphis Belle. A portrait of Snapp and illustration of the plane are also included.
Date: March 2009
Creator: Snapp, Helen Wyatt
System: The Portal to Texas History
A search for muon neutrino and antineutrino disappearance in MiniBooNE (open access)

A search for muon neutrino and antineutrino disappearance in MiniBooNE

The MiniBooNE Collaboration reports a search for {nu}{sub {mu}} and {bar {nu}}{sub {mu}} disappearance in the {Delta}m{sup 2} region of a few eV{sup 2}. These measurements are important for constraining models with extra types of neutrinos, extra dimensions and CPT violation. Fits to the shape of the {nu}{sub {mu}} and {bar {nu}}{sub {mu}} energy spectra reveal no evidence for disappearance at 90% confidence level (CL) in either mode. This is the first test of {bar {nu}}{sub {mu}} disappearance between {Delta}m{sup 2} = 0.1-10 eV{sup 2}.
Date: March 1, 2009
Creator: Aguilar-Arevalo, Alexis A.; Anderson, C. E.; Bazarko, A. O.; Brice, S. J.; Brown, Bruce C.; Bugel, Leonard G. et al.
System: The UNT Digital Library
Ni spin switching induced by magnetic frustration in FeMn/Ni/Cu(001) (open access)

Ni spin switching induced by magnetic frustration in FeMn/Ni/Cu(001)

Epitaxially grown FeMn/Ni/Cu(001) films are investigated by Photoemission Electron Microscopy and Magneto-Optic Kerr Effect. We find that as the FeMn overlayer changes from paramagnetic to antiferromagnetic state, it could switch the ferromagnetic Ni spin direction from out-of-plane to in-plane direction of the film. This phenomenon reveals a new mechanism of creating magnetic anisotropy and is attributed to the out-of-plane spin frustration at the FeMn-Ni interface.
Date: March 8, 2009
Creator: Wu, J.; Choi, J.; Scholl, A.; Doran, A.; Arenholz, E.; Hwang, Chanyong et al.
System: The UNT Digital Library
Material properties limiting the performance of CZT gamma-ray detectors (open access)

Material properties limiting the performance of CZT gamma-ray detectors

CdZnTe (CZT) nuclear radiation detectors are advanced sensors that utilize innovative technologies developed for wide band-gap semiconductor industry and microelectronics. They open opportunities for new types of room-temperature operating, field deployable instruments that provide accurate identification of potential radiological threats and timely awareness for both the civilian and military communities. Room-temperature radiation detectors are an emerging technology that relies on the use of high-quality CZT crystals whose availability is currently limited by material non-uniformities and the presence of extended defects. To address these issues, which are most critical to CZT sensor developments, we developed X-ray mapping and IR transmission microscopy systems to characterize both CZT crystals and devices. Since a customized system is required for such X-ray measurements, we use synchrotron radiation beams available at BNL's National Synchrotron Light Source. A highly-collimated and high-intensity X-ray beam supports measurements of areas as small as 10 x 10 {micro}m{sup 2}, and allowed us to see fluctuations in collected charge over the entire area of the detector in a reasonable time. The IR microscopy system allows for 3D visualization of Te inclusions and other extended defects. In this paper, we describe the experimental techniques used in our measurements and typical results obtained from …
Date: March 16, 2009
Creator: Bolotnikov, A. E.; Babalola, S.; Camarda, G. S.; Cui, Y.; Egarievwe, S. U.; Hossain, A. et al.
System: The UNT Digital Library
Measurement of the b-Hadron Production Cross Section Using Decays to MU- d0 X Final States in p anti-p Collisions at s**(1/2) = 1.96-TeV (open access)

Measurement of the b-Hadron Production Cross Section Using Decays to MU- d0 X Final States in p anti-p Collisions at s**(1/2) = 1.96-TeV

We report a measurement of the production cross section for b hadrons in p{bar p} collisions at {radical}s = 1.96 TeV. Using a data sample derived from an integrated luminosity 83 pb{sup -1} collected with the upgraded Collider Detector (CDF II) at the Fermilab Tevatron, we analyze b hadrons, H{sub b}, partially reconstructed in the semileptonic decay mode H{sub b} {yields} {mu}{sup -} D{sup 0} X. Our measurement of the inclusive production cross section for b hadrons with transverse momentum p{sub T} > 9 GeV/c and rapidity |y| < 0.6 is {sigma} = 1.30 {micro}b {+-} 0.05 {micro}b(stat) {+-} 0.14 {micro}b(syst) {+-} 0.07 {micro}b({Beta}), where the uncertainties are statistical, systematic, and from branching fractions respectively. The differential cross sections d{sigma}/d{sub T}T are found to be in good agreement with recent measurements of the H{sub b} cross section and well described by fixed-order next-to-leading logarithm predictions.
Date: March 1, 2009
Creator: Aaltonen, T.; Adelman, Jahred A.; Akimoto, T.; Alvarez Gonzalez, B.; Amerio, S.; Amidei, Dante E. et al.
System: The UNT Digital Library
2008 Photoions, Photoionization & Photodetachment Gordon Research Conference January 27-February 1, 2008 (open access)

2008 Photoions, Photoionization & Photodetachment Gordon Research Conference January 27-February 1, 2008

This conference brings together scientists interested in a range of basic phenomena linked to the ejection and scattering of electrons from atoms, molecules, clusters, liquids and solids by absorption of light. Photoionization, a highly sensitive probe of both structure and dynamics, can range from perturbative single-photon processes to strong-field highly non-perturbative interactions. It is responsible for the formation and destruction of molecules in astrophysical and plasma environments and successfully used in advanced analytical techniques. Positive ions, which can be produced and studied most effectively using photoionization, are the major components of all plasmas, vital constituents of flames and important intermediates in many chemical reactions. Negative ions are significant as transient species and, when photodetached, the corresponding neutral species often undergoes remarkable, otherwise non-observable, dynamics. The scope of the meeting spans from novel observations in atomic and molecular physics, such as Coulomb Crystals, highly excited states and cold Rydberg plasmas, to novel energy resolved or ultrafast time-resolved experiments, photoionization in strong laser fields, theoretical method development for electron scattering, photoionization and photodetachment and more complex phenomena such as charge transfer and DNA and protein conductivity, important for biological and analytical applications.
Date: March 31, 2009
Creator: GRay, Klaus Muller-Dethefs Nancy Ryan
System: The UNT Digital Library
Exact Lattice Supersymmetry (open access)

Exact Lattice Supersymmetry

We provide an introduction to recent lattice formulations of supersymmetric theories which are invariant under one or more real supersymmetries at nonzero lattice spacing. These include the especially interesting case of N = 4 SYM in four dimensions. We discuss approaches based both on twisted supersymmetry and orbifold-deconstruction techniques and show their equivalence in the case of gauge theories. The presence of an exact supersymmetry reduces and in some cases eliminates the need for fine tuning to achieve a continuum limit invariant under the full supersymmetry of the target theory. We discuss open problems.
Date: March 31, 2009
Creator: Catterall, Simon; Kaplan, David B. & Unsal, Mithat
System: The UNT Digital Library
Imaging of magnetic DW injection processed in patterened Ni80Fe20 structures (open access)

Imaging of magnetic DW injection processed in patterened Ni80Fe20 structures

Magnetization reversal in patterned ferromagnetic nanowires usually occurs via domain wall (DW) nucleation and propagation from one end (or both ends) of the wire which can be significantly reduced by a large, magnetically soft pad on one of the wire ends. These 'nucleation pads' reverse at lower fields than an isolated nanowire and introduce a DW to the wire from the wire end attached to the pad. Once a critical 'injection' field is reached, the DW sweeps through the wire, reversing its magnetization. Nucleation pads are frequently used as part of nanowire devices and experimental structures. Magnetic-field-driven shift register memory can include an injection pad to write data while those attached to nanowire spiral turn sensors act as both a source and sink of domain walls. Both of these devices use two-dimensional wire circuits and therefore require the use of orthogonal in-plane magnetic fields to drive domain walls through wires of different orientations. These bi-axial fields can significantly alter the fields at which DW injection occurs and control the number of different injection modes. We have used magnetic transmission soft X-ray microscopy (M-TXM) [6] providing 25nm spatial resolution to image the evolution of magnetization configurations in patterned 24nm thick Ni{sub …
Date: March 23, 2009
Creator: Bryan, M. T.; Basu, S.; Fry, P. W.; Schrefl, T.; Gibbs, M.R.J.; Allwood, D. A. et al.
System: The UNT Digital Library
The Underground Corrosion of Selected Type 300 Stainless Steels After 34 Years (open access)

The Underground Corrosion of Selected Type 300 Stainless Steels After 34 Years

Recently, interest in long-term underground corrosion has greatly increased because of the ongoing need to dispose of nuclear waste. Additionally, the Nuclear Waste Policy Act of 1982 requires disposal of high-level nuclear waste in an underground repository. Current contaminant release and transport models use limited available short-term underground corrosion rates when considering container and waste form degradation. Consequently, the resulting models oversimplify the complex mechanisms of underground metal corrosion. The complexity of stainless steel corrosion mechanisms and the processes by which corrosion products migrate from their source are not well depicted by a corrosion rate based on general attack. The research presented here is the analysis of austenitic stainless steels after 33½ years of burial. In this research, the corrosion specimens were analyzed using applicable ASTM standards as well as microscopic and X-ray examination to determine the mechanisms of underground stainless steel corrosion. As presented, the differences in the corrosion mechanisms vary with the type of stainless steel and the treatment of the samples. The uniqueness of the long sampling time allows for further understanding of the actual stainless steel corrosion mechanisms, and when applied back into predictive models, will assist in reduction of the uncertainty in parameters for predicting …
Date: March 1, 2009
Creator: Yoder, T. S. & Flitton, M. K. Adler
System: The UNT Digital Library
Developing microbe-plant interactions for applications in plant-growth promotion and disease control, production of useful compounds, remediation, and carbon sequestration (open access)

Developing microbe-plant interactions for applications in plant-growth promotion and disease control, production of useful compounds, remediation, and carbon sequestration

Interactions between plants and microbes are an integral part of our terrestrial ecosystem. Microbe-plant interactions are being applied in many areas. In this review, we present recent reports of applications in the areas of plant-growth promotion, biocontrol, bioactive compound and biomaterial production, remediation and carbon sequestration. Challenges, limitations and future outlook for each field are discussed.
Date: March 1, 2009
Creator: Wu, C. H.; Bernard, S.; Andersen, G.L. & Chen, W.
System: The UNT Digital Library
HYDROGEN TECHNOLOGY RESEARCH AT THE SAVANNAH RIVER NATIONAL LABORATORY (open access)

HYDROGEN TECHNOLOGY RESEARCH AT THE SAVANNAH RIVER NATIONAL LABORATORY

The Savannah River National Laboratory (SRNL) is a U.S. Department of Energy research and development laboratory located at the Savannah River Site (SRS) near Aiken, South Carolina. SRNL has over 50 years of experience in developing and applying hydrogen technology, both through its national defense activities as well as through its recent activities with the DOE Hydrogen Programs. The hydrogen technical staff at SRNL comprises over 90 scientists, engineers and technologists, and it is believed to be the largest such staff in the U.S. SRNL has ongoing R&D initiatives in a variety of hydrogen storage areas, including metal hydrides, complex hydrides, chemical hydrides and carbon nanotubes. SRNL has over 25 years of experience in metal hydrides and solid-state hydrogen storage research, development and demonstration. As part of its defense mission at SRS, SRNL developed, designed, demonstrated and provides ongoing technical support for the largest hydrogen processing facility in the world based on the integrated use of metal hydrides for hydrogen storage, separation, and compression. The SRNL has been active in teaming with academic and industrial partners to advance hydrogen technology. A primary focus of SRNL's R&D has been hydrogen storage using metal and complex hydrides. SRNL and its Hydrogen Technology …
Date: March 2, 2009
Creator: Danko, E
System: The UNT Digital Library
Bioaccumulation Potential Of Air Contaminants: Combining Biological Allometry, Chemical Equilibrium And Mass-Balances To Predict Accumulation Of Air Pollutants In Various Mammals (open access)

Bioaccumulation Potential Of Air Contaminants: Combining Biological Allometry, Chemical Equilibrium And Mass-Balances To Predict Accumulation Of Air Pollutants In Various Mammals

In the present study we develop and test a uniform model intended for single compartment analysis in the context of human and environmental risk assessment of airborne contaminants. The new aspects of the model are the integration of biological allometry with fugacity-based mass-balance theory to describe exchange of contaminants with air. The developed model is applicable to various mammalian species and a range of chemicals, while requiring few and typically well-known input parameters, such as the adult mass and composition of the species, and the octanol-water and air-water partition coefficient of the chemical. Accumulation of organic chemicals is typically considered to be a function of the chemical affinity forlipid components in tissues. Here, we use a generic description of chemical affinity for neutral and polar lipids and proteins to estimate blood-air partition coefficients (Kba) and tissue-air partition coefficients (Kta) for various mammals. This provides a more accurate prediction of blood-air partition coefficients, as proteins make up a large fraction of total blood components. The results show that 75percent of the modeled inhalation and exhalation rate constants are within a factor of 2 from independent empirical values for humans, rats and mice, and 87percent of the predicted blood-air partition coefficients are …
Date: March 1, 2009
Creator: Veltman, Karin; McKone, Thomas E.; Huijbregts, Mark A.J. & Hendriks, A. Jan
System: The UNT Digital Library
Study of the decay K+ ---> pi+ nu anti-nu in the momentum region 140 < P(pi) < 199-MeV/c (open access)

Study of the decay K+ ---> pi+ nu anti-nu in the momentum region 140 < P(pi) < 199-MeV/c

None
Date: March 1, 2009
Creator: Artamonov, A. V.; /Serpukhov, IHEP; Bassalleck, B.; U., /New Mexico; Bhuyan, B.; /Brookhaven et al.
System: The UNT Digital Library
High-frequency surface acoustic wave propagation in nanaostructures characterized by coherent extreme ultraviolet beams (open access)

High-frequency surface acoustic wave propagation in nanaostructures characterized by coherent extreme ultraviolet beams

We study ultrahigh frequency surface acoustic wave propagation in nickel-on-sapphire nanostructures. The use of ultrafast, coherent, extreme ultraviolet beams allows us to extend optical measurements of propagation dynamics of surface acoustic waves to frequencies of nearly 50 GHz, corresponding to wavelengths as short as 125 nm. We repeat the measurement on a sequence of nanostructured samples to observe surface acoustic wave dispersion in a nanostructure series for the first time. These measurements are critical for accurate characterization of thin films using this technique.
Date: March 2, 2009
Creator: Siemens, M.; Li, Q.; Murnane, M.; Kapteyn, H.; Yang, R.; Anderson, E. et al.
System: The UNT Digital Library
Update on Fresh Fuel Characterization of U-Mo Alloys (open access)

Update on Fresh Fuel Characterization of U-Mo Alloys

The need to provide more accurate property information on U-Mo fuel alloys to operators, modellers, researchers, fabricators, and government increases as success of the GTRI Reactor Convert program continues. This presentation provides an update on fresh fuel characterization activities that have occurred at the INL since the RERTR 2008 conference in Washington, D.C. The update is particularly focused on properties recently obtained and on the development progress of new measurement techniques. Furthermore, areas where useful and necessary information is still lacking is discussed. The update deals with mechanical, physical, and microstructural properties for both integrated and separate effects. Appropriate discussion of fabrication characteristics, impurities, thermodynamic response, and effects on the topic areas are provided, along with a background on the characterization techniques used and developed to obtain the information. Efforts to measure similar characteristics on irradiated fuel plates are discussed.
Date: March 1, 2009
Creator: Burkes, D. E.; Wachs, D. M.; Keiser, D. D.; Okuniewski, M. A.; Jue, J. F.; Rice, F. J. et al.
System: The UNT Digital Library
Quantitative and qualitative measures of decomposition: Is there a link? (open access)

Quantitative and qualitative measures of decomposition: Is there a link?

Decomposition rates of loblolly pine coarse woody debris (CWD) were determined by mass loss and wood density changes for trees that differed in source of mortality (natural, girdle-poison, and felling). Specifically, three treatments were examined: (1) control (CON): natural mortality; (2) CD: 5-fold increase in CWD compared with the CON; and (3) CS: 12-fold increase in snags compared with the CON. The additional CWD in the CD treatment plots and the additional snags in the CS plots were achieved by felling (for the CD plots) or girdling followed by herbicide injection (for the CS plots) select trees in these plots. Consequently,mortality on the CD plots is due to natural causes and felling. Likewise, mortality on the CS plots is due to natural causes and girdle-poison. In each treatment plot, mortality due to natural causes was inventoried since 1997, whereas mortality due to girdle-poison and felling were inventoried since 2001. No significant difference was detected between the rates of decomposition for the CWD on these treatment plots, indicating that source of the tree mortality did not influence rates of decomposition once the tree fell. These experimental measures of decomposition were compared with two decay classification systems (three- and five-unit classifications) to …
Date: March 1, 2009
Creator: Eaton, Robert, J. & Sanchez, Felipe, G.
System: The UNT Digital Library
Relating D0-anti-D0 Mixing and D0 -> l l- with New Physics (open access)

Relating D0-anti-D0 Mixing and D0 -> l l- with New Physics

We point out how, in certain models of New Physics, the same combination of couplings occurs in the amplitudes for both D{sup 0}-{bar D}{sup 0} mixing and the rare decays D{sup 0} {yields} {ell}{sup +}{ell}{sup -}. If the New Physics dominates and is responsible for the observed mixing, then a very simple correlation exists between the magnitudes of each; in fact the rates for the decay D{sup 0} {yields} {ell}{sup +}{ell}{sup -} are completely fixed by the mixing. Observation of D{sup 0} {yields} {ell}{sup +}{ell}{sup -} in excess of the Standard Model prediction could identify New Physics contributions to D{sup 0}-{bar D}{sup 0} mixing.
Date: March 31, 2009
Creator: Golowich, Eugene; Hewett, JoAnne; Pakvasa, Sandip & Petrov, Alexey A.
System: The UNT Digital Library