231 Matching Results

Results open in a new window/tab.

Radiological Contingency Planning for the Mars Science Laboratory Launch (open access)

Radiological Contingency Planning for the Mars Science Laboratory Launch

None
Date: March 1, 2008
Creator: Guss, Paul
System: The UNT Digital Library
Radiological Contingency Planning for the Mars Science Laboratory Launch (open access)

Radiological Contingency Planning for the Mars Science Laboratory Launch

The U.S. Department of Energy (DOE) provides technical support to the requesting federal agency such as the Federal Bureau of Investigation, Department of Defense, the National Space and Aeronautics and Space Administration (NASA), or a state agency to address the radiological consequences of an event. These activities include measures to alleviate damage, loss, hardship, or suffering caused by the incident; protect public health and safety; restore essential government services; and provide emergency assistance to those affected. Scheduled to launch in the fall of 2009, Mars Science Laboratory is part of NASA's Mars Exploration Program, a long-term effort of robotic exploration of the red planet. Mars Science Laboratory is a rover that will assess whether Mars ever was, or is still today, an environment able to support microbial life. In other words, its mission is to determine the planet's "habitability." The Mars Science Laboratory rover will carry a radioisotope power system that generates electricity from the heat of plutonium's radioactive decay. This power source gives the mission an operating lifespan on Mars' surface of a full Martian year (687 Earth days) or more, while also providing significantly greater mobility and operational flexibility, enhanced science payload capability, and exploration of a much …
Date: March 1, 2008
Creator: Guss, Paul
System: The UNT Digital Library
Vacuum Insulator Development for the Dielectric Wall Accelerator (open access)

Vacuum Insulator Development for the Dielectric Wall Accelerator

At Lawrence Livermore National Laboratory, we are developing a new type of accelerator, known as a Dielectric Wall Accelerator, in which compact pulse forming lines directly apply an accelerating field to the beam through an insulating vacuum boundary. The electrical strength of this insulator may define the maximum gradient achievable in these machines. To increase the system gradient, we are using 'High Gradient Insulators' composed of alternating layers of dielectric and metal for the vacuum insulator. In this paper, we present our recent results from experiment and simulation, including the first test of a High Gradient Insulator in a functioning Dielectric Wall Accelerator cell.
Date: March 17, 2008
Creator: Harris, J. R.; Blackfield, D.; Caporaso, G. J.; Chen, Y.; Hawkins, S.; Kendig, M. et al.
System: The UNT Digital Library
Comparison of Dithiophosphinic and Phosphinic Acid Derivatives for Minor Actinide Extraction (open access)

Comparison of Dithiophosphinic and Phosphinic Acid Derivatives for Minor Actinide Extraction

A new extractant for the separation of actinide(III) and lanthanide(III), bis(otrifluoromethylphenyl) phosphinic acid (O-PA) was synthesized. The synthetic route employed mirrors one that was employed to produce the sulfur containing analog bis(otrifluoromethylphenyl) dithiophosphinic acid (S-PA). Multinuclear NMR spectroscopy was used for elementary characterization of the new O-PA derivative. This new O-PA extractant was used to perform Am(III)/Eu(III) separations and the results were directly compared to those obtained in identical separation experiments using S-PA, an extractant that is known to exhibit separation factors of ~100,000 at low pH. The separations data are presented and discussed in terms comparing the nature of the oxygen atom as a donor to that of the sulfur atom in extractants that are otherwise identical.
Date: March 1, 2008
Creator: Harrup, Mason K; Peterman, Dean R.; Luther, Thomas A.; Greenhalgh, Mitchell R. & Klaehn, John R.
System: The UNT Digital Library
Simultaneously Bound Guests and Chiral Recognition: A Chiral Self-Assembled Supramolecular Host Encapsulates Hydrophobic Guests (open access)

Simultaneously Bound Guests and Chiral Recognition: A Chiral Self-Assembled Supramolecular Host Encapsulates Hydrophobic Guests

Driven by the hydrophobic effect, a water-soluble, chiral, self-assembled supramolecular host is able to encapsulate hydrophobic organic guests in aqueous solution. Small aromatics can be encapsulated in the supramolecular assembly, and the simultaneous encapsulation of multiple guests is observed in many cases. The molecular host assembly is able to recognize different substitutional isomers of disubstituted benzenes with ortho substitution leading to the encapsulation of two guests, but meta or para substitution leading to the encapsulation of only one guest. The scope of hydrophobic guest encapsulation is further explored with chiral natural product guests. Upon encapsulation of chiral guests into the racemic host, diastereomeric host-guest complexes are formed with observed diastereoselectivities of up to 78:22 in the case of fenchone.
Date: March 6, 2008
Creator: Hastings, Courtney J.; Pluth, Michael D.; Biros, Shannon M.; Bergman, Robert G. & Raymond, Kenneth N.
System: The UNT Digital Library
Flat Field Anomalies in an X-Ray CCD Camera Measured Using a Manson X-Ray Source (open access)

Flat Field Anomalies in an X-Ray CCD Camera Measured Using a Manson X-Ray Source

The Static X-ray Imager (SXI) is a diagnostic used at the National Ignition Facility (NIF) to measure the position of the X-rays produced by lasers hitting a gold foil target. It determines how accurately NIF can point the laser beams and is critical to proper NIF operation. Imagers are located at the top and the bottom of the NIF target chamber. The CCD chip is an X-ray sensitive silicon sensor, with a large format array (2k x 2k), 24 μm square pixels, and 15 μm thick. A multi-anode Manson X-ray source, operating up to 10kV and 2mA, was used to characterize and calibrate the imagers. The output beam is heavily filtered to narrow the spectral beam width, giving a typical resolution E/ΔE≈12. The X-ray beam intensity was measured using an absolute photodiode that has accuracy better than 1% up to the Si K edge and better than 5% at higher energies. The X-ray beam provides full CCD illumination and is flat, within ±1.5% maximum to minimum. The spectral efficiency was measured at 10 energy bands ranging from 930 eV to 8470 eV. The efficiency pattern follows the properties of Si. The maximum quantum efficiency is 0.71. We observed an energy …
Date: March 1, 2008
Creator: Haugh, Michael
System: The UNT Digital Library
Evaluation of a Polyvinyl Toluene Neutron Counter Array (open access)

Evaluation of a Polyvinyl Toluene Neutron Counter Array

The purpose of this article is to simulate the performance of a neutron detector array for empirical configuration optimization and preliminary algorithm evaluation. Utilizing a compact array of borated Polyvinyl Toluene light pipes and Photomultiplier Tubes, pulse shape analysis, standard spectral histogramming, and multiplicity counting can enable neutron measurements for multiple applications. Results demonstrate that analysis with Monte Carlo N-Particle (MCNP) can be used to obtain a better understanding of field measurement results and aid in algorithm development for unfolding in conjunction with detector optimization. Use of a handheld neutron spectrometer has promise of widespread applicability. By correlating MCNP results with empirical measurements, substantial confidence can be placed on predicting detector response to sufficiently similar spectral sources under alternate experimental configurations. In addition, use of the detector has substantial promise for operational health physics applications.
Date: March 1, 2008
Creator: Hayes, Robert
System: The UNT Digital Library
Preliminary Benchmarking and MCNP Simulation Results for Homeland Security (open access)

Preliminary Benchmarking and MCNP Simulation Results for Homeland Security

The purpose of this article is to create Monte Carlo N-Particle (MCNP) input stacks for benchmarked measurements sufficient for future perturbation studies and analysis. The approach was to utilize historical experimental measurements to recreate the empirical spectral results in MCNP, both qualitatively and quantitatively. Results demonstrate that perturbation analysis of benchmarked MCNP spectra can be used to obtain a better understanding of field measurement results which may be of national interest. If one or more spectral radiation measurements are made in the field and deemed of national interest, the potential source distribution, naturally occurring radioactive material shielding, and interstitial materials can only be estimated in many circumstances. The effects from these factors on the resultant spectral radiation measurements can be very confusing. If benchmarks exist which are sufficiently similar to the suspected configuration, these benchmarks can then be compared to the suspect measurements. Having these benchmarks with validated MCNP input stacks can substantially improve the predictive capability of experts supporting these efforts.
Date: March 1, 2008
Creator: Hayes, Robert
System: The UNT Digital Library
Evidence and Implications of Frequent Fires in Ancient Shrub Tundra (open access)

Evidence and Implications of Frequent Fires in Ancient Shrub Tundra

Understanding feedbacks between terrestrial and atmospheric systems is vital for predicting the consequences of global change, particularly in the rapidly changing Arctic. Fire is a key process in this context, but the consequences of altered fire regimes in tundra ecosystems are rarely considered, largely because tundra fires occur infrequently on the modern landscape. We present paleoecological data that indicate frequent tundra fires in northcentral Alaska between 14,000 and 10,000 years ago. Charcoal and pollen from lake sediments reveal that ancient birchdominated shrub tundra burned as often as modern boreal forests in the region, every 144 years on average (+/- 90 s.d.; n = 44). Although paleoclimate interpretations and data from modern tundra fires suggest that increased burning was aided by low effective moisture, vegetation cover clearly played a critical role in facilitating the paleo-fires by creating an abundance of fine fuels. These records suggest that greater fire activity will likely accompany temperature-related increases in shrub-dominated tundra predicted for the 21st century and beyond. Increased tundra burning will have broad impacts on physical and biological systems as well as land-atmosphere interactions in the Arctic, including the potential to release stored organic carbon to the atmosphere.
Date: March 6, 2008
Creator: Higuera, P E; Brubaker, L B; Anderson, P M; Brown, T A; Kennedy, A T & Hu, F S
System: The UNT Digital Library
BOBCAT Personal Radiation Detector Field Test and Evaluation Campaign (open access)

BOBCAT Personal Radiation Detector Field Test and Evaluation Campaign

Following the success of the Anole test of portable detection system, the U.S. Department of Homeland Security (DHS) Domestic Nuclear Detection Office organized a test and evaluation campaign for personal radiation detectors (PRDs), also known as “Pagers.” This test, “Bobcat,” was conducted from July 17 to August 8, 2006, at the Nevada Test Site. The Bobcat test was designed to evaluate the performance of PRDs under various operational scenarios, such as pedestrian surveying, mobile surveying, cargo container screening, and pedestrian chokepoint monitoring. Under these testing scenarios, many operational characteristics of the PRDs, such as gamma and neutron sensitivities, positive detection and false alarm rates, response delay times, minimum detectable activities, and source localization errors, were analyzed. This paper will present the design, execution, and methodologies used to test this equipment for the DHS.
Date: March 1, 2008
Creator: Hodge, Chris
System: The UNT Digital Library
FRMAC Mission Analysis: What is it, and why is it useful? (open access)

FRMAC Mission Analysis: What is it, and why is it useful?

In 2002, the Director of the U.S. Department of Energy's (DOE's) National Nuclear Security Administration, Division of Emergency Response, requested a team of DOE scientists, considered experts in the field of radiological consequence management, assemble and construct a mission analysis upon which the DOE could build its response program and plan for future requirements. The team developed five scenarios upon which to build the data quality objectives (DQOs) that they considered necessary to ensure a comprehensive consequence management response from the DOE perspective. The resulting document was called the Consequence Management Mission Analysis. Based upon the positive reaction to this document and its obvious benefit to the Consequence Management mission, it was decided to expand the scope of the document to cover a mission analysis of the entire Federal Radiological Monitoring and Assessment Center (FRMAC) mission. The documentation team was expanded to include representatives from all signatories to the National Response Plan who have a role in responding to radiological emergencies. The scope of the FRMAC Mission Analysis includes all federal response resources which are activated to provide rapid support to affected state and local governments in the form of radiological monitoring and dose assessment activities at the incident site. …
Date: March 1, 2008
Creator: Hopkins, Rhonda
System: The UNT Digital Library
Variable Energy 2-MeV S-Band Linac for X-ray and Other Applications (open access)

Variable Energy 2-MeV S-Band Linac for X-ray and Other Applications

We will describe the design and operation of a compact, 2-MeV, S-band linear accelerator (linac) with variable energy tuning and short-pulse operation down to 15 ps with 100-A peak current. The design consists of a buncher cavity for short-pulse operation and two coupled resonator sections for acceleration. Single-pulse operation is accomplished through a fast injector system with a 219-MHz subharmonic buncher. The machine is intended to support a variety of applications, such as X-ray and electron beam diagnostic development and, recently, electron diffraction studies of phase transitions in shocked materials.
Date: March 1, 2008
Creator: Howard Bender, Dave Schwellenbach, Ron Sturges, Rusty Trainham
System: The UNT Digital Library
Reconstruction from Uniformly Attenuated SPECT Projection Data Using the DBH Method (open access)

Reconstruction from Uniformly Attenuated SPECT Projection Data Using the DBH Method

An algorithm was developed for the two-dimensional (2D) reconstruction of truncated and non-truncated uniformly attenuated data acquired from single photon emission computed tomography (SPECT). The algorithm is able to reconstruct data from half-scan (180o) and short-scan (180?+fan angle) acquisitions for parallel- and fan-beam geometries, respectively, as well as data from full-scan (360o) acquisitions. The algorithm is a derivative, backprojection, and Hilbert transform (DBH) method, which involves the backprojection of differentiated projection data followed by an inversion of the finite weighted Hilbert transform. The kernel of the inverse weighted Hilbert transform is solved numerically using matrix inversion. Numerical simulations confirm that the DBH method provides accurate reconstructions from half-scan and short-scan data, even when there is truncation. However, as the attenuation increases, finer data sampling is required.
Date: March 20, 2008
Creator: Huang, Qiu; You, Jiangsheng; Zeng, Gengsheng L. & Gullberg, Grant T.
System: The UNT Digital Library
Social Media's New Role in Emergency Management (open access)

Social Media's New Role in Emergency Management

As technology continues to evolve, emergency management organizations must adapt to new ways of responding to the media and public. This paper examines a brief overview of social media's new role in emergency management. This includes definitions of social media, the benefits of utilizing social media, examples of social media being used and finally a discussion of how agencies, such as Department of Energy national laboratories, can begin including social media in their emergency management plans.
Date: March 1, 2008
Creator: Huffman, Ethan & Prentice, Sara
System: The UNT Digital Library
Molecular analysis of the gut microbiota of identical twins with Crohn's disease (open access)

Molecular analysis of the gut microbiota of identical twins with Crohn's disease

Increasing evidence suggests that a combination of host genetics and the composition of the gut microbiota are important for development of Crohn's disease (CD). Our aim was to study identical twins with CD to determine microbial factors independently of host genetics. Fecal samples were studied from 10 monozygotic twin pairs with CD (discordant n=6, concordant n=4) and 8 healthy twin pairs. DNA was extracted, 16S rRNA genes were PCR amplified and T-RFLP fingerprints generated using general bacterial and Bacteroides group specific primers. The microbial communities were also profiled based on their % G+C contents. Bacteroides 16S rRNA genes were cloned and sequenced from a subset of the samples. The bacterial diversity in each sample and similarity indices between samples were estimated based on the T-RFLP data using a combination of statistical approaches. Healthy individuals had a significantly higher bacterial diversity compared to individuals with CD. The fecal microbial communities were more similar between healthy twins than between twins with CD, especially when these were discordant for the disease. The microbial community profiles of individuals with ileal CD were significantly different from healthy individuals and those with colonic CD. Also, CD individuals had a lower relative abundance of B. uniformis and …
Date: March 14, 2008
Creator: Jansson, Janet; Dicksved, Johan; Halfvarson, Jonas; Rosenquist, Magnus; Jarnerot, Gunnar; Tysk, Curt et al.
System: The UNT Digital Library
Influence of Control on the Pitch Damping of a Floating Wind Turbine (open access)

Influence of Control on the Pitch Damping of a Floating Wind Turbine

This paper presents the influence of conventional wind turbine blade-pitch control actions on the pitch damping of a wind turbine supported by an offshore floating barge with catenary moorings.
Date: March 1, 2008
Creator: Jonkman, J. M.
System: The UNT Digital Library
Separation of Yeast Cells from MS2 Viruses Using Acoustic Radiation Force (open access)

Separation of Yeast Cells from MS2 Viruses Using Acoustic Radiation Force

We report a rapid and robust separation of Saccharomyces cerevisiae and MS2 bacteriophage using acoustic focusing in a microfluidic device. A piezoelectric transducer (PZT) generates acoustic standing waves in the microchannel. These standing waves induce acoustic radiation force fields that direct microparticles towards the nodes (i.e., pressure minima) or the anti-nodes (i.e., pressure maxima) of the standing waves depending on the relative compressidensity between the particle and the suspending liquid.[1] For particles larger than 2 {micro}m, the transverse velocities generated by these force fields enable continuous, high throughput separation. Extensive work in the last decade [2-4] has demonstrated acoustic focusing for manipulating microparticles or biological samples in microfluidic devices. This prior work has primarily focused on experimental realization of acoustic focusing without modeling or with limited one-dimensional modeling estimates. We recently developed a finite element modeling tool to predict the two-dimensional acoustic radiation force field perpendicular to the flow direction in microfluidic devices.[1] Here we compare results from this model with experimental parametric studies including variations of the PZT driving frequencies and voltages as well as various particle sizes and compressidensities. These experimental parametric studies also provide insight into the development of an adjustable 'virtual' pore-size filter as well as …
Date: March 27, 2008
Creator: Jung, B.; Fisher, K.; Ness, K.; Rose, K. A. & Mariella, R. P., Jr.
System: The UNT Digital Library
Parallel Simulation Algorithms for the Three Dimensional Strong-Strong Beam-Beam Interaction (open access)

Parallel Simulation Algorithms for the Three Dimensional Strong-Strong Beam-Beam Interaction

The strong-strong beam-beam effect is one of the most important effects limiting the luminosity of ring colliders. Little is known about it analytically, so most studies utilize numeric simulations. The two-dimensional realm is readily accessible to workstation-class computers (cf.,e.g.,[1, 2]), while three dimensions, which add effects such as phase averaging and the hourglass effect, require vastly higher amounts of CPU time. Thus, parallelization of three-dimensional simulation techniques is imperative; in the following we discuss parallelization strategies and describe the algorithms used in our simulation code, which will reach almost linear scaling of performance vs. number of CPUs for typical setups.
Date: March 17, 2008
Creator: Kabel, A. C.
System: The UNT Digital Library
A Parallel Code for Lifetime Simulations in Hadron Storage Rings in the Presence of Parasitic Beam-Beam Interactions (open access)

A Parallel Code for Lifetime Simulations in Hadron Storage Rings in the Presence of Parasitic Beam-Beam Interactions

The usual approach to predict particle loss in storage rings in the presence of nonlinearities consists in the determination of the dynamic aperture of the machine. This method, however, will not directly predict the lifetimes of beams. We have developed a code which can, by parallelization and careful speed optimization, predict lifetimes in the presence of 100 parasitic beam-beam crossings by tracking > 10{sup 10} particles-turns. An application of this code to the anti-proton lifetime in the Tevatron at injection is discussed.
Date: March 17, 2008
Creator: Kabel, A. C.; Cai, Y.; Erdelyi, B.; Sen, T. & Xiao, M.
System: The UNT Digital Library
A Higher-Order Approach to Fluid-Particle Coupling in Microscale Polymer Flows (open access)

A Higher-Order Approach to Fluid-Particle Coupling in Microscale Polymer Flows

None
Date: March 13, 2008
Creator: Kallemov, B; Miller, G H & Trebotich, D
System: The UNT Digital Library
Exact Averaging of Stochastic Equations for Flow in Porous Media (open access)

Exact Averaging of Stochastic Equations for Flow in Porous Media

It is well known that at present, exact averaging of the equations for flow and transport in random porous media have been proposed for limited special fields. Moreover, approximate averaging methods--for example, the convergence behavior and the accuracy of truncated perturbation series--are not well studied, and in addition, calculation of high-order perturbations is very complicated. These problems have for a long time stimulated attempts to find the answer to the question: Are there in existence some, exact, and sufficiently general forms of averaged equations? Here, we present an approach for finding the general exactly averaged system of basic equations for steady flow with sources in unbounded stochastically homogeneous fields. We do this by using (1) the existence and some general properties of Green's functions for the appropriate stochastic problem, and (2) some information about the random field of conductivity. This approach enables us to find the form of the averaged equations without directly solving the stochastic equations or using the usual assumption regarding any small parameters. In the common case of a stochastically homogeneous conductivity field we present the exactly averaged new basic nonlocal equation with a unique kernel-vector. We show that in the case of some type of global …
Date: March 15, 2008
Creator: Karasaki, Kenzi; Shvidler, Mark & Karasaki, Kenzi
System: The UNT Digital Library
Results of Recent Microstructural Characterization of Irradiated U-Mo Dispersion Fuels with Al Alloy Matrices that Contain Si (open access)

Results of Recent Microstructural Characterization of Irradiated U-Mo Dispersion Fuels with Al Alloy Matrices that Contain Si

RERTR U-Mo dispersion fuel plates are being developed for application in research reactors throughout the world. As part of this development, reactor experiments are being conducted in the Advanced Test Reactor to determine the irradiation performance of different dispersion fuels that contain U-Mo alloys with different Mo contents and Al alloy matrices with different Si contents. Of particular interest is the performance of the dispersion fuels depending on the Si content of the Al alloy matrix, since the addition of Si is being looked to for improving the performance of these dispersion fuels. This paper will describe the results of recent microstructural examinations that have been performed using optical metallography and scanning electron microscopy on as-fabricated and as-irradiated dispersion fuels with different amounts of Si added to the Al matrix. Differences in the microstructural development during irradiation as a function of the Si content in the Al matrix will be discussed, and comments will be made about the development and stability of the fuel/matrix interaction layers that are commonly present in irradiated dispersion fuels.
Date: March 1, 2008
Creator: Keiser, D. D. Jr.; Robinson, A. B.; Janney, D. E. & Jue, J. F.
System: The UNT Digital Library
Results of Recent Microstructural Characterization of Irradiated U-Mo Dispersion Fuels with Al Alloy Matrices that Contain Si (open access)

Results of Recent Microstructural Characterization of Irradiated U-Mo Dispersion Fuels with Al Alloy Matrices that Contain Si

RERTR U-Mo dispersion fuel plates are being developed for application in research reactors throughout the world. Of particular interest is the irradiation performance of U-Mo dispersion fuels with Si added to the Al matrix. Si is added to improve the performance of U-Mo dispersion fuels. Microstructural examinations have been performed on fuel plates with either Al-0.2Si or 4043 Al (~4.8% Si) alloy matrix in the as-fabricated and/or as-irradiated condition using optical metallography and/or scanning electron microscopy. Fuel plates with either matrix can have Si-rich layers around the U-7Mo particles after fabrication, and during irradiation these layers were observed to grow in thickness and to become Si-deficient in some areas of the fuel plates. For the fuel plates with 4043 Al, this was observed in fuel plate areas that were exposed to very aggressive irradiation conditions.
Date: March 1, 2008
Creator: Keiser, D. D. Jr.; Robinson, A. B.; Janney, D. E. & Jue, J. F.
System: The UNT Digital Library
Progress to Develop an Advanced Solar-Selective Coating (open access)

Progress to Develop an Advanced Solar-Selective Coating

The progress to develop a durable advanced solar-selective coating will be described. Experimental work has focused on modeling high-temperature, solar-selective coatings; depositing the individual layers and modeled coatings; measuring the optical, thermal, morphology, and compositional properties and using the data to validate the modeled and deposited properties; re-optimizing the coating; and testing the coating performance and durability.
Date: March 1, 2008
Creator: Kennedy, C. E.
System: The UNT Digital Library