Resource Type

95 Matching Results

Results open in a new window/tab.

Correction: A modified aeroponic system for growing small-seeded legumes and other plants to study root systems (open access)

Correction: A modified aeroponic system for growing small-seeded legumes and other plants to study root systems

This is a correction to an article. The affiliation of the first author was published incorrectly.
Date: March 25, 2023
Creator: Cai, Jingya; Veerappan, Vijaykumar; Arildsen, Kate; Sullivan, Catrina; Piehowicz, Megan; Frugoli, Julia et al.
System: The UNT Digital Library
Carrier photodynamics in 2D perovskites with solution-processed silver and graphene contacts for bendable optoelectronics (open access)

Carrier photodynamics in 2D perovskites with solution-processed silver and graphene contacts for bendable optoelectronics

Article reporting on the inkjet printed, direct contact study of solution-processed, 2D perovskite-based photodetectors (PDs) formed on flexible PI substrates. Silver (Ag) and graphene (Gr) inks have been engineered to serve as efficient electrical contacts for solution-processed two-dimensional (2D) organo-halide (CH3(CH2)3NH3)2(CH3NH3)n−1PbnI3n+1 (n = 4) layered perovskites, where all inkjet-printed heterostructure PDs were fabricated on polyimide (PI) substrates.
Date: March 25, 2021
Creator: Hossain, Ridwan F.; Min, Misook; Ma, Liang-Chieh; Sakri, Shambhavi R. & Kaul, Anupama
System: The UNT Digital Library
Detection of Parkinson's Disease Through Automated Pupil Tracking of the Post-illumination Pupillary Response (open access)

Detection of Parkinson's Disease Through Automated Pupil Tracking of the Post-illumination Pupillary Response

This article describes a system for pupil size estimation with a user interface to allow rapid adjustment of parameters and extraction of pupil parameters of interest in order to identify Parkinson's disease (PD) as early as possible.
Date: March 25, 2021
Creator: Tabashum, Thasina; Zaffer, Adnaan; Yousefzai, Raman; Colletta, Kalea; Jost, Mary Beth; Park, Youngsook et al.
System: The UNT Digital Library
Extraction of Urban Objects in Cloud Shadows on the basis of Fusion of Airborne LiDAR and Hyperspectral Data (open access)

Extraction of Urban Objects in Cloud Shadows on the basis of Fusion of Airborne LiDAR and Hyperspectral Data

This article, fused airborne LiDAR and hyperspectral data were used to extract urban objects in cloud shadows.The experimental results confirm that the proposed method is very effective for urban object extraction in cloud shadows and thus improve urban applications such as urban green land management, land use analysis, and impervious surface assessment.
Date: February 1, 2019
Creator: Man, Qixia & Dong, Pinliang
System: The UNT Digital Library
NEW RESULTS ON THE LASER PRODUCED RELATIVISTIC ELECTRON-POSITRON PAIR PLASMA RESEARCH (open access)

NEW RESULTS ON THE LASER PRODUCED RELATIVISTIC ELECTRON-POSITRON PAIR PLASMA RESEARCH

None
Date: March 25, 2013
Creator: Chen, H
System: The UNT Digital Library
Demonstration of a narrow energy spread, ~0.5 GeV electron beam from a two-stage Laser Wake Accelerator (open access)

Demonstration of a narrow energy spread, ~0.5 GeV electron beam from a two-stage Laser Wake Accelerator

None
Date: March 25, 2011
Creator: POllock, B. B.; Clayton, C. E.; Ralph, J. E.; Albert, F.; Davidson, A.; Divol, L. et al.
System: The UNT Digital Library
GPU COMPUTING FOR PARTICLE TRACKING (open access)

GPU COMPUTING FOR PARTICLE TRACKING

This is a feasibility study of using a modern Graphics Processing Unit (GPU) to parallelize the accelerator particle tracking code. To demonstrate the massive parallelization features provided by GPU computing, a simplified TracyGPU program is developed for dynamic aperture calculation. Performances, issues, and challenges from introducing GPU are also discussed. General purpose Computation on Graphics Processing Units (GPGPU) bring massive parallel computing capabilities to numerical calculation. However, the unique architecture of GPU requires a comprehensive understanding of the hardware and programming model to be able to well optimize existing applications. In the field of accelerator physics, the dynamic aperture calculation of a storage ring, which is often the most time consuming part of the accelerator modeling and simulation, can benefit from GPU due to its embarrassingly parallel feature, which fits well with the GPU programming model. In this paper, we use the Tesla C2050 GPU which consists of 14 multi-processois (MP) with 32 cores on each MP, therefore a total of 448 cores, to host thousands ot threads dynamically. Thread is a logical execution unit of the program on GPU. In the GPU programming model, threads are grouped into a collection of blocks Within each block, multiple threads share the …
Date: March 25, 2011
Creator: Nishimura, Hiroshi; Song, Kai; Muriki, Krishna; Sun, Changchun; James, Susan & Qin, Yong
System: The UNT Digital Library
The National Ignition Facility: The Path to Ignition, High Energy Density Science and Inertial Fusion Energy (open access)

The National Ignition Facility: The Path to Ignition, High Energy Density Science and Inertial Fusion Energy

The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory (LLNL) in Livermore, CA, is a Nd:Glass laser facility capable of producing 1.8 MJ and 500 TW of ultraviolet light. This world's most energetic laser system is now operational with the goals of achieving thermonuclear burn in the laboratory and exploring the behavior of matter at extreme temperatures and energy densities. By concentrating the energy from its 192 extremely energetic laser beams into a mm{sup 3}-sized target, NIF can produce temperatures above 100 million K, densities of 1,000 g/cm{sup 3}, and pressures 100 billion times atmospheric pressure - conditions that have never been created in a laboratory and emulate those in the interiors of planetary and stellar environments. On September 29, 2010, NIF performed the first integrated ignition experiment which demonstrated the successful coordination of the laser, the cryogenic target system, the array of diagnostics and the infrastructure required for ignition. Many more experiments have been completed since. In light of this strong progress, the U.S. and the international communities are examining the implication of achieving ignition on NIF for inertial fusion energy (IFE). A laser-based IFE power plant will require a repetition rate of 10-20 Hz and a …
Date: March 25, 2011
Creator: Moses, Edward
System: The UNT Digital Library
Nonlinear pulse propagation and phase velocity of laser-driven plasma waves (open access)

Nonlinear pulse propagation and phase velocity of laser-driven plasma waves

Laser evolution and plasma wave excitation by a relativistically-intense short-pulse laser in underdense plasma are investigated in the broad pulse limit, including the effects of pulse steepening, frequency red-shifting, and energy depletion. The nonlinear plasma wave phase velocity is shown to be significantly lower than the laser group velocity and further decreases as the pulse propagates owing to laser evolution. This lowers the thresholds for trapping and wavebreaking, and reduces the energy gain and efficiency of laser-plasma accelerators that use a uniform plasma profile.
Date: March 25, 2011
Creator: Schroeder, Carl B.; Benedetti, Carlo; Esarey, Eric & Leemans, Wim
System: The UNT Digital Library
Dynamic Characterization of Mock Explosive Material Using Reverse Taylor Impact Experiments (open access)

Dynamic Characterization of Mock Explosive Material Using Reverse Taylor Impact Experiments

The motivation for the current study is to evaluate the dynamic loading response of an inert mock explosive material used to replicate the physical and mechanical properties of LX-17-1 and PBX 9502 insensitive high explosives. The evaluation of dynamic material parameters is needed for predicting the deformation behavior including the onset of failure and intensity of fragmentation resulting from high velocity impact events. These parameters are necessary for developing and validating physically based material constitutive models that will characterize the safety and performance of energetic materials. The preliminary study uses a reverse Taylor impact configuration that was designed to measure the dynamic behavior of the explosive mock up to and including associated fragmentation. A stationary rod-shaped specimen was impacted using a compressed-gas gun by accelerating a rigid steel anvil attached to a sabot. The impact test employed high-speed imaging and velocity interferometry diagnostics for capturing the transient deformation of the sample at discrete times. Once established as a viable experimental technique with mock explosives, future studies will examine the dynamic response of insensitive high explosives and propellants.
Date: March 25, 2010
Creator: Ferranti, L; Gagliardi, F J; Cunningham, B J & Vandersall, K S
System: The UNT Digital Library
Pairing Strengths for a Two Orbital Model of the Fe-pnictides (open access)

Pairing Strengths for a Two Orbital Model of the Fe-pnictides

Using an RPA approximation, we have calculated the strengths of the singlet and triplet pairing interactions which arise from the exchange of spin and orbital fluctuations for a 2-orbital model of the Fe-pnictide superconductors. When the system is doped with F, the electron pockets become dominant and we find that the strongest pairing occurs in the singlet d-wave pairing and the triplet p-wave pairing channels, which compete closely. The pairing structure in the singlet d-wave channel corresponds to a superposition of near neighbor intra-orbital singlets with a minus sign phase difference between the d{sub xz} and d{sub yz} pairs. The leading pairing configuration in the triplet channel also involves a nearest neighbor intra-orbital pairing. We find that the strengths of both the singlet and triplet pairing grow, with the singlet pairing growing faster, as the onsite Coulomb interaction approaches the value where the S = 1 particle-hole susceptibility diverges.
Date: March 25, 2010
Creator: Qi, Xiao-Liang; Raghu, S.; /Stanford U., Phys. Dept.; Liu, Chao-Xing; /Tsinghua U. /Stanford U., Phys. Dept.; Scalapino, D.J. et al.
System: The UNT Digital Library
The significance of crack-resistance curves to the mixed-mode fracture toughness of human cortical bone (open access)

The significance of crack-resistance curves to the mixed-mode fracture toughness of human cortical bone

The majority of fracture mechanics studies on the toughness of bone have been performed under tensile loading. However, it has recently been shown that the toughness of human cortical bone in the transverse (breaking) orientation is actually much lower in shear (mode II) than in tension (mode I); a fact that is physiologically relevant as in vivo bone is invariably loaded multiaxially. Since bone is a material that derives its fracture resistance primarily during crack growth through extrinsic toughening mechanisms, such as crack deflection and bridging, evaluation of its toughness is best achieved through measurements of the crack-resistance or R-curve, which describes the fracture toughness as a function of crack extension. Accordingly, in this study, we attempt to measure for the first time the R-curve fracture toughness of human cortical bone under physiologically relevant mixed-mode loading conditions. We show that the resulting mixed-mode (mode I + II) toughness depends strongly on the crack trajectory and is the result of the competition between the paths of maximum mechanical driving force and 'weakest' microstructural resistance.
Date: March 25, 2010
Creator: Zimmermann, Elizabeth A.; Launey, Maximilien E. & Ritchie, Robert O.
System: The UNT Digital Library
Axial-Torsion Testing Plastic-Bonded Explosives to Failure (open access)

Axial-Torsion Testing Plastic-Bonded Explosives to Failure

None
Date: March 25, 2009
Creator: Gagliardi, F J & Cunningham, B J
System: The UNT Digital Library
Domain-wall oscillations studies by time-resolved soft x-ray mircorscopy (open access)

Domain-wall oscillations studies by time-resolved soft x-ray mircorscopy

Fast magnetization dynamics in the micro- and nanometer regime are an interesting field of research. On these length scales magnetic structures can be designed to contain a single vortex or a single domain wall. Both size and speed of these patterns are of great interest in todays research for prospective non-volatile data storage devices. Especially the possibility to move domain-walls by spin-polarized current gained a lot of interest. Magnetic configurations can be imaged by soft X-ray magnetic microscopy with a spatial resolution down to 15 nm. By a stroboscopic pump and probe measurement scheme a temporal resolution below 100 ps is achieved. This provides the opportunity to directly image changes in magnetic domains and domain-wall motion. We image oscillations of a single domain wall in a confining potential in time steps of 200 ps by time resolved X-ray microscopy at the full-field soft X-ray transmission microscope at the Advanced Light Source in Berkeley (beamline 6.1.2). Domain walls are prepared in permalloy nanostructures with a restoring potential. The oscillation of a 180{sup o} domain wall is triggered by nanosecond current pulses. The spin-polarized current and the accompanying Oersted field can contribute to the motion of the wall. By analysis of the …
Date: March 25, 2009
Creator: Bocklage, L.; Kruger, B.; Eiselt, R.; Bolte, M.; Fischer, P. & Meier, G.
System: The UNT Digital Library
Influence of ammonium availability on expression of nifD and amtB genes during biostimulation of a U(VI) contaminated aquifer: implications for U(VI) removal and monitoring the metabolic state of Geobacteraceae (open access)

Influence of ammonium availability on expression of nifD and amtB genes during biostimulation of a U(VI) contaminated aquifer: implications for U(VI) removal and monitoring the metabolic state of Geobacteraceae

The influence of ammonium availability on bacterial community structure and the physiological status of Geobacter species during in situ bioremediation of uranium-contaminated groundwater was evaluated. Ammonium concentrations varied by 2 orders of magnitude (<4 to 400 ?M) across the study site. Analysis of 16S rRNA sequences suggested that ammonium may have been one factor influencing the community composition prior to acetate amendment with Rhodoferax species predominating over Geobacter species with higher ammonium and Dechloromonas species dominating at the site with lowest ammonium. However, once acetate was added and dissimilatory metal reduction was stimulated, Geobacter species became the predominant organisms at all locations. Rates of U(VI) reduction appeared to be more related to acetate concentrations rather than ammonium levels. In situ mRNA transcript abundance of the nitrogen fixation gene, nifD, and the ammonium transporter gene, amtB, in Geobacter species indicated that ammonium was the primary source of nitrogen during uranium reduction. The abundance of amtB was inversely correlated to ammonium levels, whereas nifD transcript levels were similar across all sites examined. These results suggest that nifD and amtB expression are closely regulated in response to ammonium availability to ensure an adequate supply of nitrogen while conserving cell resources. Thus, quantifying nifD …
Date: March 25, 2009
Creator: Mouser, Paula J.; N'Guessan, A. Lucie; Elifantz, Hila; Holmes, Dawn E.; Williams, Kenneth H; Wilkins, Michael J. et al.
System: The UNT Digital Library
A Comparison of Radiating Divertor Behavior in Single- and Double-Null Plasmas in DIII-D (open access)

A Comparison of Radiating Divertor Behavior in Single- and Double-Null Plasmas in DIII-D

'Puff and pump' radiating divertor scenarios, applied to both upper single-null (SN) and double-null (DN) H-mode plasmas, result in a 30-60% increase in radiated power with little or no decrease in {tau}{sub E}. Argon was injected into the private flux region of the upper divertor, and plasma flow into the upper divertor was enhanced by a combination of deuterium gas puffing upstream of the divertor targets and particle pumping at the targets. For the same constant deuterium injection rate, argon penetrated the main plasma of SNs more rapidly and reached a higher steady-state concentration when the Bx{del}B-ion drift direction was toward the divertor (V{sub {del}B{up_arrow}}) rather than away from the divertor (V{sub {del}B{down_arrow}}). We also found that the initial rate at which argon accumulated inside DN plasmas was more than twice that of comparable SN plasmas having the same Bx{del}B-ion drift direction. In DNs, the radiated power was not shared equally between divertors during argon injection. Only in the divertor opposite Bx{del}B ion drift direction were both significant increases in divertor radiated power and an accumulation of argon, based on spectroscopic measurements of ArII, observed. Our data suggests that a DN shape that is biased in the direction away from …
Date: March 25, 2008
Creator: Petrie, T. W.; Brooks, N. H.; Fenstermacher, M. E.; Groth, M.; Hyatt, A. W.; Isler, R. C. et al.
System: The UNT Digital Library
First-Year Spectroscopy for the SDSS-II Supernova Survey (open access)

First-Year Spectroscopy for the SDSS-II Supernova Survey

This paper presents spectroscopy of supernovae discovered in the first season of the Sloan Digital Sky Survey-II Supernova Survey. This program searches for and measures multi-band light curves of supernovae in the redshift range z = 0.05-0.4, complementing existing surveys at lower and higher redshifts. Our goal is to better characterize the supernova population, with a particular focus on SNe Ia, improving their utility as cosmological distance indicators and as probes of dark energy. Our supernova spectroscopy program features rapid-response observations using telescopes of a range of apertures, and provides confirmation of the supernova and host-galaxy types as well as precise redshifts. We describe here the target identification and prioritization, data reduction, redshift measurement, and classification of 129 SNe Ia, 16 spectroscopically probable SNe Ia, 7 SNe Ib/c, and 11 SNe II from the first season. We also describe our efforts to measure and remove the substantial host galaxy contamination existing in the majority of our SN spectra.
Date: March 25, 2008
Creator: Zheng, Chen; Romani, Roger W.; Sako, Masao; Marriner, John; Bassett, Bruce; Becker, Andrew et al.
System: The UNT Digital Library
Gamma-ray Albedo of Small Solar System Bodies (open access)

Gamma-ray Albedo of Small Solar System Bodies

We calculate the {gamma}-ray albedo flux from cosmic-ray (CR) interactions with the solid rock and ice in Main Belt asteroids and Kuiper Belt objects (KBOs) using the Moon as a template. We show that the {gamma}-ray albedo for the Main Belt and KBOs strongly depends on the small-body mass spectrum of each system and may be detectable by the forthcoming Gamma Ray Large Area Space Telescope (GLAST). If detected, it can be used to derive the mass spectrum of small bodies in the Main Belt and Kuiper Belt and to probe the spectrum of CR nuclei at close-to-interstellar conditions. The orbits of the Main Belt asteroids and KBOs are distributed near the ecliptic, which passes through the Galactic center and high Galactic latitudes. Therefore, the {gamma}-ray emission by the Main Belt and Kuiper Belt has to be taken into account when analyzing weak {gamma}-ray sources close to the ecliptic. The asteroid albedo spectrum also exhibits a 511 keV line due to secondary positrons annihilating in the rock. This may be an important and previously unrecognized celestial foreground for the INTErnational Gamma-Ray Astrophysics Laboratory (INTEGRAL) observations of the Galactic 511 keV line emission including the direction of the Galactic center. For …
Date: March 25, 2008
Creator: Moskalenko, I.V.
System: The UNT Digital Library
The Gamma-Ray Albedo of the Moon (open access)

The Gamma-Ray Albedo of the Moon

We use the GEANT4 Monte Carlo framework to calculate the {gamma}-ray albedo of the Moon due to interactions of cosmic ray (CR) nuclei with moon rock. Our calculation of the albedo spectrum agrees with the EGRET data. We show that the spectrum of {gamma}-rays from the Moon is very steep with an effective cutoff around 3-4 GeV (600 MeV for the inner part of the Moon disk) and exhibits a narrow pion-decay line at 67.5 MeV, perhaps unique in astrophysics. Apart from other astrophysical sources, the albedo spectrum of the Moon is well understood, including its absolute normalization; this makes it a useful 'standard candle' for {gamma}-ray telescopes. The steep albedo spectrum also provides a unique opportunity for energy calibration of {gamma}-ray telescopes, such as the forthcoming Gamma Ray Large Area Space Telescope (GLAST). Since the albedo flux depends on the incident CR spectrum which changes over the solar cycle, it is possible to monitor the CR spectrum using the albedo {gamma}-ray flux. Simultaneous measurements of CR proton and helium spectra by the Payload for Antimatter-Matter Exploration and Light-nuclei Astrophysics (PAMELA), and observations of the albedo {gamma}-rays by the GLAST Large Area Telescope (LAT), can be used to test the …
Date: March 25, 2008
Creator: Moskalenko, I.V.; /Stanford U., HEPL /KIPAC, Menlo Park; Porter, T.A. & /UC, Santa Cruz
System: The UNT Digital Library
Gluon scattering in N=4 super-Yang-Mills theory fromweak to strong coupling (open access)

Gluon scattering in N=4 super-Yang-Mills theory fromweak to strong coupling

I describe some recent developments in the understanding of gluon scattering amplitudes in N = 4 super-Yang-Mills theory in the large-N{sub c} limit. These amplitudes can be computed to high orders in the weak coupling expansion, and also now at strong coupling using the AdS/CFT correspondence. They hold the promise of being solvable to all orders in the gauge coupling, with the help of techniques based on integrability. They are intimately related to expectation values for polygonal Wilson loops composed of light-like segments.
Date: March 25, 2008
Creator: Dixon, Lance J.
System: The UNT Digital Library
Measurement of the Spin of the $\Xi(1530)$ Resonance (open access)

Measurement of the Spin of the $\Xi(1530)$ Resonance

The properties of the {Xi}(1530) resonance are investigated in the {Lambda}{sub c}{sup +} {yields} {Xi}{sup -}{pi}{sup +}K{sup +} decay process. The data sample was collected with the BABAR detector at the SLAC PEP-II asymmetric-energy e{sup +}e{sup -} collider operating at center of mass energies 10.58 and 10.54 GeV. The corresponding integrated luminosity is approximately 230 fb{sup -1}. The spin of the {Xi}(1530) is established to be 3/2. The existence of an S-wave amplitude in the {Xi}{sup -}{pi}{sup +} system is inferred, and its interference with the {Xi}(1530)0 amplitude provides the first clear demonstration of the Breit-Wigner phase motion expected for the {Xi}(1530). The P{sub 1}(cos {theta}{sub {Xi}{sup -}}) Legendre polynomial moment indicates the presence of a significant S-wave amplitude for {Xi}{sup -}{pi}{sup +} mass values above 1.6 GeV/c{sup 2}, and a dip in the mass distribution at approximately 1.7 GeV/c{sup 2} is interpreted as due to coherent addition of a {Xi}(1690){sup 0} contribution to this amplitude. This would imply J{sup P} = 1/2{sup -} for the {Xi}(1690). Attempts at fitting the {Xi}(1530){sup 0} lineshape yield unsatisfactory results, and this failure is attributed to interference effects associated with the amplitudes describing the K{sup +}{pi}{sup +} and/or {Xi}{sup -}K{sup +} systems.
Date: March 25, 2008
Creator: Aubert, B.; Bona, M.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prudent, X. et al.
System: The UNT Digital Library
Particulate matter chemistry and dynamics in the Twilight Zone at VERTIGO ALOHA and K2 Sites (open access)

Particulate matter chemistry and dynamics in the Twilight Zone at VERTIGO ALOHA and K2 Sites

Understanding particle dynamics in the 'Twilight Zone' is critical to prediction of the ocean's carbon cycle. As part of the VERTIGO (VERtical Transformations In the Global Ocean) project, this rarely sampled regime extending from the base of the euphotic layer to 1000 m, was characterized by double-paired day/night Multiple Unit Large Volume in-situ Filtration System (MULVFS) deployments and by {approx}100 high-frequency CTD/transmissometer/turbidity sensor profiles. VERTIGO studies lasting three weeks, contrasted oligotrophic station ALOHA (22.75{sup o}N 158{sup o}W), sampled in June-July 2004, with a biologically productive location (47{sup o}N 161{sup o}E) near station K2 in the Oyashio, occupied July-August 2005. Profiles of major and minor particulate components (C{sub org}, N, P, Ca, Si, Sr, Ba, Mn) in <1, 1-51, and >51 {micro}m size fractions, in-water optics, neutrally buoyant sediment trap (NBST) fluxes, and zooplankton data were intercompared. MULVFS total C{sub org} and C-Star particle beam attenuation coefficient (C{sub P}) were consistently related at both sites with a 27 {micro}M m{sup -1} conversion factor. 26 At K2, C{sub P} profiles further showed a multitude of transient spikes throughout the water column and spike abundance profiles closely paralleled the double peaked abundance profiles of zooplankton. Also at K2, copepods contributed {approx}40% and 10%, …
Date: March 25, 2008
Creator: Bishop, James K.B. & Wood, T.J.
System: The UNT Digital Library
Quantum Operation Time Reversal (open access)

Quantum Operation Time Reversal

The dynamics of an open quantum system can be described by a quantum operation: A linear, complete positive map of operators. Here, I exhibit a compact expression for the time reversal of a quantum operation, which is closely analogous to the time reversal of a classical Markov transition matrix. Since open quantum dynamics are stochastic, and not, in general, deterministic, the time reversal is not, in general, an inversion of the dynamics. Rather, the system relaxes toward equilibrium in both the forward and reverse time directions. The probability of a quantum trajectory and the conjugate, time reversed trajectory are related by the heat exchanged with the environment.
Date: March 25, 2008
Creator: Crooks, Gavin E.
System: The UNT Digital Library
Radiological Studies for the LCLS Beam Abort System (open access)

Radiological Studies for the LCLS Beam Abort System

The Linac Coherent Light Source (LCLS), a pioneer hard x-ray free electron laser is currently under construction at the Stanford Linear Accelerator Center. It is expected that by 2009 LCLS will deliver laser pulses of unprecedented brightness and short length, which will be used in several forefront research applications. This ambitious project encompasses major design challenges to the radiation protection like the numerous sources and the number of surveyed objects. In order to sort those, the showers from various loss sources have been tracked along a detailed model covering 1/2 mile of LCLS accelerator by means of the Monte Carlo intra nuclear cascade codes FLUKA and MARS15. This article covers the FLUKA studies of heat load; prompt and residual dose and environmental impact for the LCLS beam abort system.
Date: March 25, 2008
Creator: Santana Leitner, M.; Vollaire, J. & Mao, X.S.
System: The UNT Digital Library