Resource Type

Month

3 Matching Results

Results open in a new window/tab.

FINAL REPORT: Coupling Sorption to Soil Weathering During Reactive Transport: Impacts of Mineral Transformation and Sorbent Aging on Contaminant Speciation and Mobility (open access)

FINAL REPORT: Coupling Sorption to Soil Weathering During Reactive Transport: Impacts of Mineral Transformation and Sorbent Aging on Contaminant Speciation and Mobility

The goal of our project is a predictive-mechanistic understanding of the coupling between mineral weathering and contaminant (Cs, Sr, I) fate in caustic waste-impacted sediments at the Hanford Site. Through bench-scale experiments, we have identified geochemical transformations that alter the mobility of priority pollutants (Cs, Sr, I) in subsurface environments characteristic of high-level radioactive waste (HLRW)-impacted DoE sites. Our studies are designed to model the unique chemistry of this subsurface contamination, to quantify rates of contaminant uptake and release, and to identify molecular mechanisms of time-dependent, irreversible sequestration of contaminants into the solid phase. Our approach is to link quantitative macroscopic measures of contaminant mobility and partitioning to the molecular-scale mechanisms that mediate them. We have found that the molecular mechanisms themselves change with time and system composition in response to the evolving chemistry of contaminant-solution-mineral interactions. Specifically, our results show that contaminant fate is closely coupled to the major silicate incongruent weathering reactions that occur when soil solids are contacted with aqueous solutions under conditions that are far from equilibrium. Neoformed precipitates - including carbonate, feldspathoid and zeolite phases, have been observed to sequester Cs and Sr under caustic waste conditions. In contrast, iodide is less effectively sequestered into …
Date: March 21, 2009
Creator: O'Day, Peggy A.; Chorover, Jon; Mueller, Karl; Steefel, Carl & Serne, R. Jeff
System: The UNT Digital Library
Observed Minimum Illuminance Threshold for Night Market Vendors in Kenya who use LED Lamps (open access)

Observed Minimum Illuminance Threshold for Night Market Vendors in Kenya who use LED Lamps

Creation of light for work, socializing, and general illumination is a fundamental application of technology around the world. For those who lack access to electricity, an emerging and diverse range of LED based lighting products hold promise for replacing and/or augmenting their current fuel-based lighting sources that are costly and dirty. Along with analysis of environmental factors, economic models for total cost-ofownership of LED lighting products are an important tool for studying the impacts of these products as they emerge in markets of developing countries. One important metric in those models is the minimum illuminance demanded by end-users for a given task before recharging the lamp or replacing batteries. It impacts the lighting service cost per unit time if charging is done with purchased electricity, batteries, or charging services. The concept is illustrated in figure 1: LED lighting products are generally brightest immediately after the battery is charged or replaced and the illuminance degrades as the battery is discharged. When a minimum threshold level of illuminance is reached, the operational time for the battery charge cycle is over. The cost to recharge depends on the method utilized; these include charging at a shop at a fixed price per charge, charging …
Date: March 21, 2009
Creator: Johnstone, Peter; Jacobson, Arne; Mills, Evan & Radecsky, Kristen
System: The UNT Digital Library
Testing of FMI's Coal Upgrading Process (open access)

Testing of FMI's Coal Upgrading Process

WRI and FMI have collaborated to develop and test a novel coal upgrading technology. Proprietary coal upgrading technology is a fluidized bed-based continuous process which allows high through-puts, reducing the coal processing costs. Processing is carried out under controlled oxidizing conditions at mild enough conditions that compared to other coal upgrading technologies; the produced water is not as difficult to treat. All the energy required for coal drying and upgrading is derived from the coal itself. Under the auspices of the Jointly Sponsored Research Program, Cooperative Agreement DE-FC26-98FT40323, a nominal 400 lbs/hour PDU was constructed and operated. Over the course of this project, several low-rank coals were successfully tested in the PDU. In all cases, a higher Btu, low moisture content, stable product was produced and subsequently analyzed. Stack emissions were monitored and produced water samples were analyzed. Product stability was established by performing moisture readsorption testing. Product pyrophobicity was demonstrated by instrumenting a coal pile.
Date: March 21, 2009
Creator: Sethi, Vijay
System: The UNT Digital Library