Resource Type

Month

2 Matching Results

Results open in a new window/tab.

Center-stabilized Yang-Mills Theory:Confinement and Large N Volume Independence (open access)

Center-stabilized Yang-Mills Theory:Confinement and Large N Volume Independence

We examine a double trace deformation of SU(N) Yang-Mills theory which, for large N and large volume, is equivalent to unmodified Yang-Mills theory up to O(1/N{sup 2}) corrections. In contrast to the unmodified theory, large N volume independence is valid in the deformed theory down to arbitrarily small volumes. The double trace deformation prevents the spontaneous breaking of center symmetry which would otherwise disrupt large N volume independence in small volumes. For small values of N, if the theory is formulated on R{sup 3} x S{sup 1} with a sufficiently small compactification size L, then an analytic treatment of the non-perturbative dynamics of the deformed theory is possible. In this regime, we show that the deformed Yang-Mills theory has a mass gap and exhibits linear confinement. Increasing the circumference L or number of colors N decreases the separation of scales on which the analytic treatment relies. However, there are no order parameters which distinguish the small and large radius regimes. Consequently, for small N the deformed theory provides a novel example of a locally four-dimensional pure gauge theory in which one has analytic control over confinement, while for large N it provides a simple fully reduced model for Yang-Mills theory. …
Date: March 21, 2008
Creator: Unsal, Mithat; /SLAC /Stanford U., Phys. Dept.; Yaffe, Laurence G. & /Washington U., Seattle
System: The UNT Digital Library
Using Perturbed QR Factorizations To Solve Linear Least-Squares Problems (open access)

Using Perturbed QR Factorizations To Solve Linear Least-Squares Problems

We propose and analyze a new tool to help solve sparse linear least-squares problems min{sub x} {parallel}Ax-b{parallel}{sub 2}. Our method is based on a sparse QR factorization of a low-rank perturbation {cflx A} of A. More precisely, we show that the R factor of {cflx A} is an effective preconditioner for the least-squares problem min{sub x} {parallel}Ax-b{parallel}{sub 2}, when solved using LSQR. We propose applications for the new technique. When A is rank deficient we can add rows to ensure that the preconditioner is well-conditioned without column pivoting. When A is sparse except for a few dense rows we can drop these dense rows from A to obtain {cflx A}. Another application is solving an updated or downdated problem. If R is a good preconditioner for the original problem A, it is a good preconditioner for the updated/downdated problem {cflx A}. We can also solve what-if scenarios, where we want to find the solution if a column of the original matrix is changed/removed. We present a spectral theory that analyzes the generalized spectrum of the pencil (A*A,R*R) and analyze the applications.
Date: March 21, 2008
Creator: Avron, Haim; Ng, Esmond G. & Toledo, Sivan
System: The UNT Digital Library