Application of Developed APCVD Transparent Conducting Oxides and Undercoat Technologies for Economical OLED Lighting (open access)

Application of Developed APCVD Transparent Conducting Oxides and Undercoat Technologies for Economical OLED Lighting

Economics is a key factor for application of organic light emitting diodes (OLED) in general lighting relative to OLED flat panel displays that can handle high cost materials such as indium tin oxide (ITO) or Indium zinc oxide (IZO) as the transparent conducting oxide (TCO) on display glass. However, for OLED lighting to penetrate into general illumination, economics and sustainable materials are critical. The issues with ITO have been documented at the DOE SSL R&D and Manufacturing workshops for the last 5 years and the issue is being exacerbated by export controls from China (one of the major sources of elemental indium). Therefore, ITO is not sustainable because of the fluctuating costs and the United States (US) dependency on other nations such as China. Numerous alternatives to ITO/IZO are being evaluated such as Ag nanoparticles/nanowires, carbon nanotubes, graphene, and other metal oxides. Of these other metal oxides, doped zinc oxide has attracted a lot of attention over the last 10 years. The volume of zinc mined is a factor of 80,000 greater than indium and the US has significant volumes of zinc mined domestically, resulting in the ability for the US to be self-sufficient for this element that can be …
Date: January 2, 2011
Creator: Bluhm, Martin; Coffey, James; Korotkov, Roman; Polsz, Craig; Salemi, Alexandre; Smith, Robert et al.
Object Type: Report
System: The UNT Digital Library
Marine methane cycle simulations for the period of early global warming (open access)

Marine methane cycle simulations for the period of early global warming

Geochemical environments, fates, and effects are modeled for methane released into seawater by the decomposition of climate-sensitive clathrates. A contemporary global background cycle is first constructed, within the framework of the Parallel Ocean Program. Input from organics in the upper thermocline is related to oxygen levels, and microbial consumption is parameterized from available rate measurements. Seepage into bottom layers is then superimposed, representing typical seabed fluid flow. The resulting CH{sub 4} distribution is validated against surface saturation ratios, vertical sections, and slope plume studies. Injections of clathrate-derived methane are explored by distributing a small number of point sources around the Arctic continental shelf, where stocks are extensive and susceptible to instability during the first few decades of global warming. Isolated bottom cells are assigned dissolved gas fluxes from porous-media simulation. Given the present bulk removal pattern, methane does not penetrate far from emission sites. Accumulated effects, however, spread to the regional scale following the modeled current system. Both hypoxification and acidification are documented. Sensitivity studies illustrate a potential for material restrictions to broaden the perturbations, since methanotrophic consumers require nutrients and trace metals. When such factors are considered, methane buildup within the Arctic basin is enhanced. However, freshened polar surface …
Date: January 2, 2011
Creator: Elliott, S.; Maltrud, M.; Reagan, M.T.; Moridis, G.J. & Cameron-Smith, P.J.
Object Type: Article
System: The UNT Digital Library
Application of Developed APCVD Transparent Conducting Oxides and Undercoat Technologies for Economical OLED Lighting (open access)

Application of Developed APCVD Transparent Conducting Oxides and Undercoat Technologies for Economical OLED Lighting

Economics is a key factor for application of organic light emitting diodes (OLED) in general lighting relative to OLED flat panel displays that can handle high cost materials such as indium tin oxide (ITO) or Indium zinc oxide (IZO) as the transparent conducting oxide (TCO) on display glass. However, for OLED lighting to penetrate into general illumination, economics and sustainable materials are critical. The issues with ITO have been documented at the DOE SSL R&D and Manufacturing workshops for the last 5 years and the issue is being exaserbated by export controls from China (one of the major sources of elemental indium). Therefore, ITO is not sustainable because of the fluctuating costs and the United States (US) dependency on other nations such as China. Numerous alternatives to ITO/IZO are being evaluated such as Ag nanoparticles/nanowires, carbon nanotubes, graphene, and other metal oxides. Of these other metal oxides, doped zinc oxide has attracted a lot of attention over the last 10 years. The volume of zinc mined is a factor of 80,000 greater than indium and the US has significant volumes of zinc mined domestically, resulting in the ability for the US to be self-sufficient for this element that can be …
Date: January 2, 2011
Creator: Silverman, Gary; Bluhm, Martin; Coffey, James; Korotkov, Roman; Polsz, Craig; Salemi, Alexandre et al.
Object Type: Report
System: The UNT Digital Library
ITER Core Imaging X-Ray Spectrometer Conceptual Design and Performance Assessment - Phase 2 (open access)

ITER Core Imaging X-Ray Spectrometer Conceptual Design and Performance Assessment - Phase 2

During Phase 2 of our study of the CIXS conceptual design we have tackled additional important issues that are unique to the ITER environment. These include the thermal control of the crystal and detector enclosures located in an environment with a 100-250 C ambient temperature, tritium containment, and the range of crystal and detector movement based on the need for spectral adjustments and the desire to make measurements of colder plasmas. In addressing these issues we have selected a ''Dewar''-type enclosure for the crystals and detectors. Applying realistic view factors for radiant heat and making allowance for conduction we have made engineering studies of this enclosure and showed that the cooling requirements can be solved and the temperature can be kept sufficiently constant without compromising the specification parameters of the CIXS. We have chosen a minimum 3 mm combined thickness of the six beryllium windows needed in a Dewar-type enclosure and showed that a single window of 0.5 mm thickness satisfies tritium containment requirements. For measuring the temperature in cooler ITER plasmas, we have chosen to use the K-shell lines of Fe24+. Iron is the preferred choice because its radiation can be analyzed with the identical CIXS settings used for …
Date: January 2, 2011
Creator: Beiersdorfer, P; Wen, J; Dunn, J & Morris, K
Object Type: Report
System: The UNT Digital Library