Carbon Dioxide Capture From Flue Gas Using Dry Regenerable Sorbents Quarterly Technical Progress Report: October-December 2004 (open access)

Carbon Dioxide Capture From Flue Gas Using Dry Regenerable Sorbents Quarterly Technical Progress Report: October-December 2004

This report describes research conducted between October 1, 2004 and December 31, 2004 on the use of dry regenerable sorbents for removal of carbon dioxide from flue gas. Two supported sorbents were tested in a bench scale fluidized bed reactor system. The sorbents were prepared by impregnation of sodium carbonate on to an inert support at a commercial catalyst manufacturing facility. One sorbent, tested through five cycles of carbon dioxide sorption in an atmosphere of 3% water vapor and 0.8 to 3% carbon dioxide showed consistent reactivity with sodium carbonate utilization of 7 to 14%. A second, similarly prepared material, showed comparable reactivity in one cycle of testing. Batches of 5 other materials were prepared in laboratory scale quantities (primarily by spray drying). These materials generally have significantly greater surface areas than calcined sodium bicarbonate. Small scale testing showed no significant adsorption of mercury on representative carbon dioxide sorbent materials under expected flue gas conditions.
Date: January 1, 2005
Creator: Green, David A.; Turk, Brian S.; Portzer, Jeffrey W.; Nelson, Thomas & Gupta, Raghubir P.
System: The UNT Digital Library
Carbon Dioxide Capture From Flue Gas Using Dry Regenerable Sorbents Quarterly Technical Progress Report: October-December 2002 (open access)

Carbon Dioxide Capture From Flue Gas Using Dry Regenerable Sorbents Quarterly Technical Progress Report: October-December 2002

The objective of this project is to develop a simple and inexpensive process to separate CO{sub 2} as an essentially pure stream from a fossil fuel combustion system using a regenerable sorbent. The sorbents being investigated in this project are primarily alkali carbonates, and particularly sodium carbonate and potassium carbonate, which are converted to bicarbonates or intermediate salts through reaction with carbon dioxide and water vapor. Bicarbonates are regenerated to carbonates when heated, producing a nearly pure CO{sub 2} stream after condensation of water vapor. This quarter, electrobalance tests suggested that high calcination temperatures decrease the activity of sodium bicarbonate Grade 1 (SBC No.1) during subsequent carbonation cycles, but there is little or no progressive decrease in activity in successive cycles. SBC No.1 appears to be more active than SBC No.3. As expected, the presence of SO{sub 2} in simulated flue gas results in a progressive loss of sorbent capacity with increasing cycles. This is most likely due to an irreversible reaction to produce Na{sub 2}SO{sub 3}. This compound appears to be stable at calcination temperatures as high as 200 C. Tests of 40% supported potassium carbonate sorbent and plain support material suggest that some of the activity observed in …
Date: January 1, 2003
Creator: Green, David A.; Turk, Brian S.; Portzer, Jeffrey W.; Gupta, Raghubir P.; McMichael, William J.; Liang, Ya et al.
System: The UNT Digital Library