Resource Type

3 Matching Results

Results open in a new window/tab.

Longitudinal dynamics and stability in beams for heavy-ion fusion (open access)

Longitudinal dynamics and stability in beams for heavy-ion fusion

Successful transport of induction-driven beams for heavy-ion fusion requires careful control of the longitudinal space charge. The usual control technique is the periodic application of time-varying longitudinal electric fields, called `ears`, that on the average, balance the space-charge field. this technique is illustrated using a fluid/envelope code CIRCE, and the sensitivity of the method to errors in these ear fields is illustrated. The possibility that periodic ear fields also excite the longitudinal instability is examined.
Date: January 5, 1996
Creator: Sharp, W. M.; Callahan, D. A. & Grote, D. P.
System: The UNT Digital Library
Analysis of high resolution scatter images from laser damage experiments performed on KDP (open access)

Analysis of high resolution scatter images from laser damage experiments performed on KDP

Interest in producing high damage threshold KH{sub 2}PO{sub 4} (KDP) and (D{sub x}H{sub 1-x}){sub 2}PO{sub 4} (KD*P, DKDP) for optical switching and frequency conversion applications is being driven by the system requirements for the National Ignition Facility (NIF) at Lawrence Livermore National Lab (LLNL). Historically, the path to achieving higher damage thresholds has been to improve the purity of crystal growth solutions. Application of advanced filtration technology has increased the damage threshold, but gives little insight into the actual mechanisms of laser damage. We have developed a laser scatter diagnostic to better study bulk defects and laser damage mechanisms in KDP and KD*P crystals. This diagnostic consists of a cavity doubled, kilohertz class, Nd:YLF laser (527 nm) and high dynamic range CCD camera which allows imaging of bulk scatter signals. With it, we have performed damage tests at 355 nm on four different {open_quotes}vintages{close_quotes} of KDP crystals, concentrating on crystals produced via fast growth methods. We compare the diagnostic`s resolution to LLNL`s standard damage detection method of 100X darkfield microscopy and discuss its impact on damage threshold determination. We have observed the disappearance of scatter sites upon exposure to subthreshold irradiation. In contrast, we have seen scatterers appear where none …
Date: January 5, 1996
Creator: Runkel, M.; Woods, B. & Yan, M.
System: The UNT Digital Library
Influence of microstructure on laser damage threshold of IBS coatings (open access)

Influence of microstructure on laser damage threshold of IBS coatings

Ion-beam sputtering (IBS) coatings were developed for the laser gyro industry to meet significantly different requirements than those of fusion lasers. Laser gyro mirrors are small (< 25 mm) and require low losses (< 30 ppm typical) and high stability with long exposures to low power laser energy. In contrast, fusion laser optics are large (< 1 meter), have significantly reduced loss requirements (< 5,000 ppm) and high damage thresholds (> 26 J/cm{sup 2} at 1,064 nm with 3-ns pulses). As part of the National Ignition Facility (NIF) coating development effort, IBS coatings are being studied to explore the possible benefits of this technology to NIF optics. As an initial step to achieving the NIF size and damage threshold requirements, the coating process is being scaled to uniformly coat a 20 x 40 cm{sup 2} area with reduced spectral, reflected wavefront, and laser damage threshold requirements. Here, multilayer coatings deposited by ion-beam sputtering with amorphous layers were found to have lower damage thresholds at 1,064 nm than similar coatings with crystalline layers. Interestingly, at higher fluences the damage was less severe for the amorphous coatings. The magnitude of the difference in damage thresholds between the two different microstructures was strongly …
Date: January 5, 1996
Creator: Stolz, C. J.; Genin, F. Y.; Kozlowski, M. R.; Long, D.; Lalazari, R.; Wu, Z. L. et al.
System: The UNT Digital Library