Spatial and Temporal Patterns of Areal and Volumetric Phytoplankton Productivity of Lake Texoma (open access)

Spatial and Temporal Patterns of Areal and Volumetric Phytoplankton Productivity of Lake Texoma

Phytoplankton productivity of Lake Texoma was measured for one year from August 1999 to August 2000 for four stations, using the oxygen change method and laboratory incubation. Mean values of the photosynthetic parameters, PBmax and alphaB ranged from 4.86 to 46.39 mg O2.mg Chl-1.hr-1 for PBmax and 20.06 to 98.96 mg O2.mg Chl-1.E-1.m2 for alphaB. These values were in the range to be expected for a highly turbid, temperate reservoir. Estimated gross annual areal productivity ranged from 594 g C.m2.yr-1 (P.Q. = 1.2), at a station in the Washita River Zone to 753 g C.m2.yr-1 at a station in the Red River Zone, of the reservoir. Gross annual areal productivity at Station 17, in the Main Lake Zone, was 708 g C.m2.yr-1. Gross areal and volumetric productivity showed distinct seasonal variation with Photosynthetically Available Radiation (PAR) and temperature. Trophic status estimated on a station-by-station basis, using net productivity values derived from gross productivity and respiration estimates, was mesotrophic for all the stations, though one station approached eutrophy. Net productivity values ranged from 0.74 to 0.91 g C. m-2.d-1. An algal bioassay conducted at two stations in August 2000, revealed that phosphorus was most likely the nutrient limiting photosynthesis at both …
Date: August 2001
Creator: Baugher, Tessy
System: The UNT Digital Library
Spatial and Temporal Influences of Water Quality on Zooplankton in Lake Texoma (open access)

Spatial and Temporal Influences of Water Quality on Zooplankton in Lake Texoma

Seventy-one aquatic species including the copepodids and nauplii were identified from Lake Texoma from August 1996 to September 1997. Zooplankton community structure, abundance and spatial and temporal distributions were compared among five lake zones delineated a priori based on chloride concentration. The zones, in order of decreasing chloride concentration, are the Red River zone (RRZ), Red river Transition zone (RRTZ), Main Lake zone (MLZ), Washita River Transition zone (WRTZ) and Washita River zone (WRZ). Bray Curtis Similarity Index showed community structure was most similar in the two Red River arm zones, the two Washita River arm zones and the MLZ. Zooplankton abundance was greatest in the Red River arm (312 org/L), intermediate in the Washita River arm (217 org/L) and least in the Main Lake body (103 org/L). A significant increase in the abundance of a deformed rotifer, Keratella cochlearis, was observed mainly in the Red River arm during a second study from March 1999 to June 1999. Seasonal dynamics, rather than spatial dynamics, were more important in structuring the zooplankton community, especially in the two river arms. Spatial variance was solely attributed to station and zone effects independent of time for a few crustacean species and many of the …
Date: May 2000
Creator: Franks, Jessica L.
System: The UNT Digital Library