Spatial and Temporal Patterns of Areal and Volumetric Phytoplankton Productivity of Lake Texoma (open access)

Spatial and Temporal Patterns of Areal and Volumetric Phytoplankton Productivity of Lake Texoma

Phytoplankton productivity of Lake Texoma was measured for one year from August 1999 to August 2000 for four stations, using the oxygen change method and laboratory incubation. Mean values of the photosynthetic parameters, PBmax and alphaB ranged from 4.86 to 46.39 mg O2.mg Chl-1.hr-1 for PBmax and 20.06 to 98.96 mg O2.mg Chl-1.E-1.m2 for alphaB. These values were in the range to be expected for a highly turbid, temperate reservoir. Estimated gross annual areal productivity ranged from 594 g C.m2.yr-1 (P.Q. = 1.2), at a station in the Washita River Zone to 753 g C.m2.yr-1 at a station in the Red River Zone, of the reservoir. Gross annual areal productivity at Station 17, in the Main Lake Zone, was 708 g C.m2.yr-1. Gross areal and volumetric productivity showed distinct seasonal variation with Photosynthetically Available Radiation (PAR) and temperature. Trophic status estimated on a station-by-station basis, using net productivity values derived from gross productivity and respiration estimates, was mesotrophic for all the stations, though one station approached eutrophy. Net productivity values ranged from 0.74 to 0.91 g C. m-2.d-1. An algal bioassay conducted at two stations in August 2000, revealed that phosphorus was most likely the nutrient limiting photosynthesis at both …
Date: August 2001
Creator: Baugher, Tessy
System: The UNT Digital Library
Seasonal and Spatial Variability of the Microcrustacean Community in Lake Texoma, Texas and Oklahoma (open access)

Seasonal and Spatial Variability of the Microcrustacean Community in Lake Texoma, Texas and Oklahoma

Twenty-eight species of zooplankton were identified from Lake Texoma. Seasonal density of the overall microcrustacean community and seasonal cycles of individual species were compared with northern populations and any available literature from the Southwest. Cycles of occurrence and abundance were similar to those observed in northern populations but tended to occur earlier in the year due to higher temperatures. Spatial distributions within the reservoir were heavily influenced by nutrient and salt input from the Red River, which resulted in dense populations in the Red River Arm. In addition, during the summer, the microcrustacean community was restricted to the epilimnion due to anoxic conditions in the hypolimnion of the reservoir.
Date: August 1980
Creator: Crist, Lawrence W.
System: The UNT Digital Library
Developing a Forest Gap Model to Be Applied to a Watershed-scaled Landscape in the Cross Timbers Ecoregion Using a Topographic Wetness Index (open access)

Developing a Forest Gap Model to Be Applied to a Watershed-scaled Landscape in the Cross Timbers Ecoregion Using a Topographic Wetness Index

A method was developed for extending a fine-scaled forest gap model to a watershed-scaled landscape, using the Eastern Cross Timbers ecoregion as a case study for the method. A topographic wetness index calculated from digital elevation data was used as a measure of hydrologic across the modeled landscape, and the gap model modified to have with a topographically-based hydrologic input parameter. The model was parameterized by terrain type units that were defined using combinations of USDA soil series and classes of the topographic wetness index. A number of issues regarding the sources, grid resolutions, and processing methods of the digital elevation data are addressed in this application of the topographic wetness index. Three different grid sizes, 5, 10, and 29 meter, from both LiDAR-derived and contour-derived elevation grids were used, and the grids were processed using both single-directional flow algorithm and bi-directional flow algorithm. The result of these different grids were compared and analyzed in context of their application in defining terrain types for the forest gap model. Refinements were made in the timescale of gap model’s weather model, converting it into a daily weather generator, in order to incorporate the effects of the new topographic/hydrologic input parameter. The precipitation …
Date: August 2014
Creator: Goetz, Heinrich (Heinrich Erwin)
System: The UNT Digital Library
Underwater Optical Properties of Lake Texoma (Oklahoma-Texas) Using Secchi Disk, Submarine Photometer, and High-Resolution Spectroscopy (open access)

Underwater Optical Properties of Lake Texoma (Oklahoma-Texas) Using Secchi Disk, Submarine Photometer, and High-Resolution Spectroscopy

The underwater optical climate of Lake Texoma was measured at eleven fixed stations from August 1996 to August 1997. Secchi transparency and submarine photometry characterized seasonal and spatial values of secchi depth (SD), vertical attenuation coefficient (η''), and depth of euphotic zone (Zeu). Indices of Zeu:SD and η'' × SD were compared with universally applied values derived from inland and coastal waters. Turbidity explained 76% of the variation (p = 0.0001) of η'' among water quality parameters, including chlorophyll-α. Using a spectroradiometer, spectral signatures of chlorophyll-α and turbidity were located. Stations with low turbidity exhibited a distinct green reflectance peak around 590-610 nanometers, indicating presence of chlorophyll-α. Stations with high turbidity exhibited a reflectance peak shift towards the red spectrum, making it difficult to detect the chlorophyll signature. Derivative analysis of the reflectance signal at 590-610, and 720-780 nanometers allowed discrimination of this chlorophyll signature from those of turbidity (0.66 ≤ r^2 ≤ 0.99).
Date: August 1998
Creator: Rolbiecki, David A. (David Alan)
System: The UNT Digital Library