Optimal Sensor Placement for Structural Health Monitoring (open access)

Optimal Sensor Placement for Structural Health Monitoring

In large-scale civil structures, a limited number of sensors are placed to monitor the health of civil structures to reduce maintenance, communication and energy costs. In this thesis, the problem of optimal sensor location placement to infer the health of civil structures is explored. First, a comparative study of approaches from the fields of control engineering and civil engineering is conducted . The widely used civil engineering approaches such as effective independence (EI) and modal assurance criterion (MAC) have limitations because of the negligence of modes and damping parameters. On the other hand, control engineering approaches consider the entire system dynamics using impulse response-type sensor measurement data. Such inference can be formulated as an estimation problem, with the dynamics formulated as a second-order differential equation. The comparative study suggests that damping dynamics play significant impact to the selection of best sensor location---the civil engineering approaches that neglect the damping dynamics lead to very different sensor locations from those of the control engineering approaches. In the second part of the thesis, an initial attempt to directly connect the topological graph of the structure (that defines the damping and stiffness matrices) and the second-order dynamics is conducted.
Date: December 2014
Creator: Movva, Gopichand
System: The UNT Digital Library
An Application of Digital Video Recording and Off-grid Technology to Burrowing Owl Conservation Research (open access)

An Application of Digital Video Recording and Off-grid Technology to Burrowing Owl Conservation Research

Through this research, engineering students and conservation biologists constructed an off-grid video system for observing western burrowing owls in El Paso, Texas. The burrowing owl has a declining population and their range decreasing, driving scientists' interest to see inside the den for observing critical nesting behavior. Texas Parks and Wildlife Department (TPWD) biologists wanted videos from inside the dark, isolated hillside owl burrows. This research yielded a replicable multi-camera prototype, empowering others to explore applications of engineering and wildlife monitoring. The remote station used an off-the-shelf video recording system, solar panels, charge controller, and lead acid batteries. Four local K-12 science educators participated in system testing at Lake Ray Roberts State Park through the Research Experiences for Teachers (RET, NSF #1132585) program, as well as four undergraduate engineering students as senior design research.
Date: August 2014
Creator: Williams, Jennifer M.
System: The UNT Digital Library