Remedial Action Plan and Site Design for Stabilization of the Inactive Uranium Processing Site at Naturita, Colorado. Appendix B of Attachment 3: Groundwater Hydrology Report, Attachment 4: Water Resources Protection Strategy, Final (open access)

Remedial Action Plan and Site Design for Stabilization of the Inactive Uranium Processing Site at Naturita, Colorado. Appendix B of Attachment 3: Groundwater Hydrology Report, Attachment 4: Water Resources Protection Strategy, Final

Attachment 3 Groundwater Hydrology Report describes the hydrogeology, water quality, and water resources at the processing site and Dry Flats disposal site. The Hydrological Services calculations contained in Appendix A of Attachment 3, are presented in a separate report. Attachment 4 Water Resources Protection Strategy describes how the remedial action will be in compliance with the proposed EPA groundwater standards.
Date: March 1994
Creator: unknown
Object Type: Report
System: The UNT Digital Library
Remedial Action Plan and Site Design for Stabilization of the Inactive Uranium Processing Site at Naturita, Colorado. Remedial Action Selection Report, Appendix B of Attachment 2: Geology Report, Final (open access)

Remedial Action Plan and Site Design for Stabilization of the Inactive Uranium Processing Site at Naturita, Colorado. Remedial Action Selection Report, Appendix B of Attachment 2: Geology Report, Final

The uranium processing site near Naturita, Colorado, is one of 24 inactive uranium mill sites designated to be cleaned up by the US Department of Energy (DOE) under the Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA), 42 USC {section} 7901 et seq. Part of the UMTRCA requires that the US Nuclear Regulatory Commission (NRC) concur with the DOE`s remedial action plan (RAP) and certify that the remedial action conducted at the site complies with the standards promulgated by the US Environmental Protection Agency (EPA). Included in the RAP is this Remedial Action Selection Report (RAS), which describes the proposed remedial action for the Naturita site. An extensive amount of data and supporting information has been generated and evaluated for this remedial action. These data and supporting information are not incorporated into this single document but are included or referenced in the supporting documents. The RAP consists of this RAS and four supporting documents or attachments. This Attachment 2, Geology Report describes the details of geologic, geomorphic, and seismic conditions at the Dry Flats disposal site.
Date: March 1994
Creator: unknown
Object Type: Report
System: The UNT Digital Library
UMTRA Project Water Sampling and Analysis Plan: Canonsburg and Burrell, Pennsylvania (open access)

UMTRA Project Water Sampling and Analysis Plan: Canonsburg and Burrell, Pennsylvania

Surface remedial action was completed at the Canonsburg and Burrell UMTRA Project sites in southwestern Pennsylvania in 1985 and 1987, respectively. Results of 1993 water sampling indicate ground water flow conditions and ground water quality at both sites have remained relatively consistent with time. Uranium concentrations in ground water continue to exceed the maximum concentration limit (MCL) at the Canonsburg site; no MCLs are exceeded in ground water at the Burrell site. Surface water quality shows no evidence of impact from the sites.
Date: March 1994
Creator: unknown
Object Type: Report
System: The UNT Digital Library
UMTRA Project Water Sampling and Analysis Plan, Riverton, Wyoming (open access)

UMTRA Project Water Sampling and Analysis Plan, Riverton, Wyoming

Surface remediation was completed at the former uranium mill site in Riverton, Wyoming, in 1990. Residual radioactive materials (contaminated soil and debris) were removed and disposed of at Union Carbide Corporation`s (Umetco) nearby Gas Hills Title 2 facility. Ground water in the surficial and semiconfined aquifers (known collectively as the `uppermost aquifer`) below the former mill and tailings site has been contaminated. No contamination has been detected in the deeper, confined sandstone aquifer. The contaminant plume extends off site to the south and east. The plume is constrained by surface wetlands and small streams to the east and west of the site and by the Little Wind River to the south. Fifteen monitor wells installed in 1993 were sampled to better define the contaminant plume and to provide additional water quality data for the baseline risk assessment. Samples also were collected from domestic wells in response to a request by the Wyoming Department of Environmental Quality in January 1994. No contamination attributable to the former uranium milling operations have ever been detected in any of the domestic wells used for potable supplies.
Date: March 1994
Creator: unknown
Object Type: Report
System: The UNT Digital Library
UMTRA Project Water Sampling and Analysis Plan, Spook, Wyoming (open access)

UMTRA Project Water Sampling and Analysis Plan, Spook, Wyoming

Surface remedial action is complete at the Spook Uranium Mill Tailings Remedial Action Project site in Wyoming. Based on an evaluation of site characterization data, the US Nuclear Regulatory Commission, US Department of Energy, and state of Wyoming have concurred in the determination that a program to monitor ground water is not required because ground water in the uppermost aquifer is Class 3 (limited use) (40 CFR 192.21(g)(1993)).
Date: March 1994
Creator: unknown
Object Type: Report
System: The UNT Digital Library
Aerodynamic, structural, and trajectory analysis of ASTRID-1 vehicle (open access)

Aerodynamic, structural, and trajectory analysis of ASTRID-1 vehicle

The Johns Hopkins University/Applied Physics Laboratory, JHU/API, in support of Lawrence Livermore National Laboratory, LLNL, is conducting aerodynamic, trajectory, and structural analysis of the Advanced Single Stage Technology Rapid Insertion Demonstration (ASTRID) vehicle, being launched out of Vandenberg Air Force Base (VAFB) in February 1994. The launch is designated ASTRID-1 and is the first in a series of three that will be launched out of VAFB. Launch dates for the next two flights have not been identified, but they are scheduled for the 1994-1995 time frame. The primary goal of the ASTRID-1 flight is to test the LLNL light weight thrust on demand bi-propellant pumped divert propulsion system. The system is employed as the main thrusters for the ASTRID-1 vehicle and uses hydrazine as the mono-propellant. The major conclusions are: (1) The vehicle is very stable throughout flight (stability margin = 17 to 24 inches); (2) The aerodynamic frequency and the roll rate are such that pitch-roll interactions will be small; (3) The high stability margin combined with the high launcher elevation angle makes the vehicle flight path highly sensitive to perturbations during the initial phase of flight, i.e., during the first second of flight after leaving the rail; (4) …
Date: February 10, 1994
Creator: Glover, L. S.; Iwaskiw, A. P.; Oursler, M. A.; Perini, L. L. & Schaefer, E. D.
Object Type: Report
System: The UNT Digital Library
Environmental Assessment of Remedial Action at the Naturita Uranium Processing Site Near Naturita, Colorado. Revision 3 (open access)

Environmental Assessment of Remedial Action at the Naturita Uranium Processing Site Near Naturita, Colorado. Revision 3

The proposed remedial action for the Naturita processing site is relocation of the contaminated materials and debris to the Dry Flats disposal site, 6 road miles (mi) [10 kilometers (km)] to the southeast. At the disposal site, the contaminated materials would be stabilized and covered with layers of earth and rock. The proposed disposal site is on land administered by the Bureau of Land Management (BLM) and used primarily for livestock grazing. The final disposal site would cover approximately 57 ac (23 ha), which would be permanently transferred from the BLM to the DOE and restricted from future uses. The remedial action activities would be conducted by the DOE`s Uranium Mill Tailings Remedial Action (UMTRA) Project. The proposed remedial action would result in the loss of approximately 162 ac (66 ha) of soils at the processing and disposal sites; however, 133 ac (55 ha) of these soils at and adjacent to the processing site are contaminated and cannot be used for other purposes. If supplemental standards are approved by the NRC and state of Colorado, approximately 112 ac (45 ha) of contaminated soils adjacent to the processing site would not be cleaned up. This area is steeply sloped. The cleanup …
Date: February 1, 1994
Creator: unknown
Object Type: Report
System: The UNT Digital Library
Role of polycrystallinity in CdTe and CuInSe{sub 2} photovoltaic cells. Annual subcontract report, 1 April 1992--31 March 1993 (open access)

Role of polycrystallinity in CdTe and CuInSe{sub 2} photovoltaic cells. Annual subcontract report, 1 April 1992--31 March 1993

This report describes work to conduct several investigations of thin-film polycrystalline solar cells. (1) An analysis of high-efficiency solar cells fabricated at the University of South Florida showed significant reduction in forward recombination current, and the cells were stable over a 3-month test period. (2) Transient voltage effects were documented in a large number of polycrystalline cells and were attributed to long-lived trapping states sensitive to voltage changes near one-half open-circuit voltage. (3) Collection efficiency and its voltage dependence were carefully calculated. The typical effect on photocurrent at operating voltages is about 2% for CuInSe{sub 2}, and less for other cells.
Date: February 1, 1994
Creator: Sites, J. R.
Object Type: Report
System: The UNT Digital Library
UMTRA Project Water Sampling and Analysis Plan, Ambrosia Lake, New Mexico (open access)

UMTRA Project Water Sampling and Analysis Plan, Ambrosia Lake, New Mexico

This water sampling and analysis plan (WSAP) provides the basis for ground water sampling at the Ambrosia Lake Uranium Mill Tailings Remedial Action (UMTRA) Project site during fiscal year 1994. It identifies and justifies the sampling locations, analytical parameters, detection limits, and sampling frequency for the monitoring locations and will be updated annually. The Ambrosia Lake site is in McKinley County, New Mexico, about 40 kilometers (km) (25 miles [mi]) north of Grants, New Mexico, and 1.6 km (1 mi) east of New Mexico Highway 509 (Figure 1.1). The town closest to the tailings pile is San Mateo, about 16 km ( 10 mi) southeast (Figure 1.2). The former mill and tailings pile are in Section 28, and two holding ponds are in Section 33, Township 14 North, Range 9 West. The site is shown on the US Geological Survey (USGS) map (USGS, 1980). The site is approximately 2100 meters (m) (7000 feet [ft]) above sea level.
Date: February 1, 1994
Creator: unknown
Object Type: Report
System: The UNT Digital Library
UMTRA Project Water Sampling and Analysis Plan, Falls City, Texas (open access)

UMTRA Project Water Sampling and Analysis Plan, Falls City, Texas

Surface remedial action will be completed at the Falls City, Texas, Uranium Mill Tailings Remedial Action Project site in the spring of 1994. Results of water sampling activity from 1989 to 1993 indicate that ground water contamination occurs primarily in the Deweesville/Conquista aquifer (the uppermost aquifer) and that the contamination migrates along four distinct contaminant plumes. Contaminated ground water from some wells in these regions has significantly elevated levels of aluminum, arsenic, cadmium, manganese, molybdenum, selenium, sulfate, and uranium. Contamination in the Dilworth aquifer was identified in monitor well 977 and in monitor well 833 at the southern edge of former tailings pile 4. There is no evidence that surface water quality in Tordilla and Scared Dog Creeks is impacted by tailings seepage. The following water sampling activities are planned for calendar year 1994: (1) Ground water sampling from 15 monitor wells to monitor the migration of the four major contaminant plumes within the Deweesville/Conquista aquifer. (2) Ground water sampling from five monitor wells to monitor contaminated and background ground water quality conditions in the Dilworth aquifer. Because of disposal cell construction activities, all plume monitor wells screened in the Dilworth aquifer were abandoned. No surface water locations are proposed …
Date: February 1, 1994
Creator: unknown
Object Type: Report
System: The UNT Digital Library
UMTRA Project Water Sampling and Analysis Plan -- Shiprock, New Mexico (open access)

UMTRA Project Water Sampling and Analysis Plan -- Shiprock, New Mexico

Water sampling and analysis plan (WSAP) is required for each U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project site to provide a basis for ground water and surface water sampling at disposal and former processing sites. This WSAP identifies and justifies the sampling locations, analytical parameters, detection limits, and sampling frequency for the monitoring stations at the Navaho Reservation in Shiprock, New Mexico, UMTRA Project site. The purposes of the water sampling at Shiprock for fiscal year (FY) 1994 are to (1) collect water quality data at new monitoring locations in order to build a defensible statistical data base, (2) monitor plume movement on the terrace and floodplain, and (3) monitor the impact of alluvial ground water discharge into the San Juan River. The third activity is important because the community of Shiprock withdraws water from the San Juan River directly across from the contaminated alluvial floodplain below the abandoned uranium mill tailings processing site.
Date: February 1994
Creator: unknown
Object Type: Report
System: The UNT Digital Library
Surfactant studies for bench-scale operation; Sixth quarterly technical progress report, October 1, 1993--December 31, 1993 (open access)

Surfactant studies for bench-scale operation; Sixth quarterly technical progress report, October 1, 1993--December 31, 1993

A phase II study has been initiated to investigate surfactant-assisted coal liquefaction, with the objective of quantifying the enhancement in liquid yields and product quality. This report covers the sixth quarter of work. The major accomplishments were (1) Completion of the distillation of the liquid product from coal liquefaction autoclave reactor runs with Illinois No. 6 coal at 400{degree}C, with and without surfactant and/or catalyst at pressures of 1700 psig, (2) Batch autoclave runs at 375 and 400{degree}C with 1 wt % lignin to Illinois No. 6 coal to further define the surfactant effect of sodium lignosulfonate, and (3) a preliminary economic evaluation of the application of the lignosulfonate surfactant in an industrial liquefaction process and a proposed conceptual plant design.
Date: January 21, 1994
Creator: Hickey, G.S. & Sharma, P.K.
Object Type: Report
System: The UNT Digital Library
Environmental Assessment of Remedial Action at the Naturita Uranium Processing Site Near Naturita, Colorado. Revision 2 (open access)

Environmental Assessment of Remedial Action at the Naturita Uranium Processing Site Near Naturita, Colorado. Revision 2

The proposed remedial action for the Naturita processing site is relocation of the contaminated materials and debris to the Dry Flats disposal sits, 6 road miles (mi) [10 kilometers (km)) to the southeast. At the disposal site, the contaminated materials would be stabilized and covered with layers of earth and rock. The proposed disposal site is on land administered by the Bureau of Land Management (BLM) and used primarily for livestock grazing. The final disposal sits would cover approximately 57 ac (23 ha), which would be permanently transferred from the BLM to the DOE and restricted from future uses. The remedial action activities would be conducted by the DOE`s Uranium Mill Tailings Remedial Action (UMTRA) Project. The proposed remedial action would result in the loss of approximately 162 ac (66 ha) of soils at the processing and disposal sites; however, 133 ac (55 ha) of these soils at and adjacent to the processing site are contaminated and cannot be used for other purposes. If supplemental standards are approved by the NRC and state of Colorado, approximately 112 ac (45 ha) of contaminated soils adjacent to the processing site would not be cleaned up. This area is steeply sloped. The cleanup …
Date: January 1, 1994
Creator: unknown
Object Type: Report
System: The UNT Digital Library
Site-Specific Analysis of Radiological and Physical Parameters for Cobbly Soils at the Gunnison, Colorado, Processing Site. Revision 1 (open access)

Site-Specific Analysis of Radiological and Physical Parameters for Cobbly Soils at the Gunnison, Colorado, Processing Site. Revision 1

The remedial action at the Gunnison, Colorado, processing site is being performed under the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978. Under UMTRCA, the US Environmental Protection Agency (EPA) is charged with the responsibility of developing appropriate and applicable standards for the cleanup of radiologically contaminated land and buildings at 24 designated sites, including the Gunnison, Colorado, inactive processing site. Section 108 of Public Law 95-604 states that the US Department of Energy (DOE) shall ``select and perform remedial actions at the designated processing sites and disposal sites in accordance with the general standards`` prescribed by the EPA. Regulations governing the required remedial action at inactive uranium processing sites were promulgated by the EPA in 1983 and are contained in 40 CFR Part 192 (1993), Health and Environmental Protection Standards for Uranium and Thorium Mill Tailings. This document describes the radiological and physical parameters for the remedial action of the soil.
Date: January 1, 1994
Creator: unknown
Object Type: Report
System: The UNT Digital Library
UMTRA Project Water Sampling and Analysis Plan, Durango, Colorado (open access)

UMTRA Project Water Sampling and Analysis Plan, Durango, Colorado

Surface remedial action has been completed at the Uranium Mill Tailings Remedial Action Project in Durango, Colorado. Contaminated soil and debris have been removed from the former processing site and placed in the Bodo Canyon disposal cell. Ground water at the former uranium mill/tailings site and raffinate pond area has been contaminated by the former milling operations. The ground water at the disposal site was not impacted by the former milling operations at the time of the cell`s construction. Activities for fiscal 1994 involve ground water sampling and site characterization of the disposal site.
Date: January 1, 1994
Creator: unknown
Object Type: Report
System: The UNT Digital Library
Chemically Assisted in Situ Recovery of Oil Shale (open access)

Chemically Assisted in Situ Recovery of Oil Shale

The purpose of the research project was to investigate the feasibility of the chemically assisted in situ retort method for recovering shale oil from Colorado oil shale. The chemically assisted in situ procedure uses hydrogen chloride (HCl), steam (H{sub 2}O), and carbon dioxide (CO{sub 2}) at moderate pressure to recovery shale oil from Colorado oil shale at temperatures substantially lower than those required for the thermal decomposition of kerogen. The process had been previously examined under static, reaction-equilibrium conditions, and had been shown to achieve significant shale oil recoveries from powdered oil shale. The purpose of this research project was to determine if these results were applicable to a dynamic experiment, and achieve penetration into and recovery of shale oil from solid oil shale. Much was learned about how to perform these experiments. Corrosion, chemical stability, and temperature stability problems were discovered and overcome. Engineering and design problems were discovered and overcome. High recovery (90% of estimated Fischer Assay) was observed in one experiment. Significant recovery (30% of estimated Fischer Assay) was also observed in another experiment. Minor amounts of freed organics were observed in two more experiments. Penetration and breakthrough of solid cores was observed in six experiments.
Date: December 31, 1993
Creator: Ramierz, W. F.
Object Type: Report
System: The UNT Digital Library
Direct Conversion of Methane to Methanol in a Non-Isothermal Catalytic Membrane Reactor (open access)

Direct Conversion of Methane to Methanol in a Non-Isothermal Catalytic Membrane Reactor

The direct partial oxidation of CH{sub 4} to CH{sub 3}OH has been studied in a non-permselective, non-isothermal catalytic membrane reactor system. A cooling tube introduced coaxially inside a tubular membrane reactor quenches the product stream rapidly so that further oxidation of CH{sub 3}OH is inhibited. Selectivity for CH{sub 3}OH formation is significantly higher with quenching than in experiments without quenching. For CH{sub 4} conversion of 4% to 7% CH{sub 3}OH selectivity is 40% to 50% with quenching and 25% to 35% without quenching.
Date: December 31, 1993
Creator: Noble, R. D. & Falconer, J. L.
Object Type: Article
System: The UNT Digital Library
The study of redox-active inorganic substituents of cellulase enzymes. Quarterly report, 25 August--25 November 1993 (open access)

The study of redox-active inorganic substituents of cellulase enzymes. Quarterly report, 25 August--25 November 1993

Cellulase (CBHI) was modified by bis (2,2- bipyridine) ruthenium (II) and the modified enzyme was assayed for cellulase activity using p- nitrophenyl beta-D-cellobioside as substrate. Absorption spectroscopy of native and modified CBHI was also conducted.
Date: December 31, 1993
Creator: unknown
Object Type: Report
System: The UNT Digital Library
Waste minimization opportunities at the U.S. Uranium Mill Tailings Remedial Action (UMTRA) Project, Rifle, Colorado, site (open access)

Waste minimization opportunities at the U.S. Uranium Mill Tailings Remedial Action (UMTRA) Project, Rifle, Colorado, site

At two uranium mill sites in Rifle, Colorado, the US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project is removing uranium mill tailings and contaminated subgrade soils. This remediation activity will result in the production of groundwater contaminated with uranium, heavy metals, ammonia, sulfates, and total dissolved solids (TDS). The initial remediation plan called for a wastewater treatment plant for removal of the uranium, heavy metals, and ammonia, with disposal of the treated water, which still includes the sulfates and TDSS, to the Colorado River. The National Pollutant Discharge Elimination (NPDES) permit issued by the Colorado Department of Health for the two Rifle sites contained more restrictive discharge limits than originally anticipated. During the detailed review of alternate treatment systems to meet these more restrictive limits, the proposed construction procedures were reviewed emphasizing the methods to minimize groundwater production to reduce the size of the water treatment facility, or to eliminate it entirely. It was determined that with changes to the excavation procedures and use of the contaminated groundwater for use in dust suppression at the disposal site, discharge to the river could be eliminated completely.
Date: December 31, 1993
Creator: Hartmann, George L.; Arp, Sharon & Hempill, Hugh
Object Type: Report
System: The UNT Digital Library
Baseline Risk Assessment of Groundwater Contamination at the Uranium Mill Tailings Site Near Gunnison, Colorado (open access)

Baseline Risk Assessment of Groundwater Contamination at the Uranium Mill Tailings Site Near Gunnison, Colorado

This Baseline Risk Assessment of Groundwater Contamination at the Uranium Mill Tailings Site Near Gunnison, Colorado evaluates potential impacts to public health or the environment resulting from groundwater contamination at the former uranium mill processing site. The tailings and other contaminated material at this site are being placed in an off-site disposal cell by the US Department of Energy`s (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. Currently, the UMTRA Project is evaluating groundwater contamination. This is the second risk assessment of groundwater contamination at this site. The first risk assessment was performed primarily to evaluate existing domestic wells. This risk assessment evaluates the most contaminated monitor wells at the processing site. It will be used to assist in determining what remedial action is needed for contaminated groundwater at the site after the tailings are relocated. This risk assessment follows an approach outlined by the US Environmental Protection Agency (EPA). The first step is to evaluate groundwater data collected from monitor wells at the site. Evaluation of these data showed that the main contaminants in the groundwater are cadmium, cobalt, iron, manganese, sulfate, uranium, and some of the products of radioactive decay of uranium.
Date: December 1, 1993
Creator: unknown
Object Type: Report
System: The UNT Digital Library
Economic Impact Study of the Uranium Mill Tailings Remedial Action Project in Colorado: Colorado State Fiscal Year 1993 (open access)

Economic Impact Study of the Uranium Mill Tailings Remedial Action Project in Colorado: Colorado State Fiscal Year 1993

The Colorado economic impact study summarizes employment and economic benefits to the state from activities associated with the Uranium Mill Tailings Remedial Action (UMTRA) Project during Colorado state fiscal year 1993 (July 1, 1992, through June 30, 1993). To capture employment benefits, a questionnaire was distributed to subcontractor employees at the active UMTRA Project sites of Grand Junction, Rifle, and Gunnison, Colorado. An estimated 52 percent of the employees working on the UMTRA Project responded to this information request. Economic data were requested from each site prime subcontractor, as well as from the Remedial Action Contractor. The most significant benefits associated with the UMTRA Project in Colorado are summarized.
Date: December 1, 1993
Creator: unknown
Object Type: Report
System: The UNT Digital Library
Long-Term Surveillance Plan for the Collins Ranch Disposal Site, Lakeview, Oregon. Revision 2 (open access)

Long-Term Surveillance Plan for the Collins Ranch Disposal Site, Lakeview, Oregon. Revision 2

This long-term surveillance plan (LTSP) for the Lakeview, Oregon, Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site describes the surveillance activities for the Lakeview (Collins Ranch) disposal cell, which will be referred to as the Collins Ranch disposal cell throughout this document. The US Department of Energy (DOE) will carry out these activities to ensure that the disposal cell continues to function as designed. This final LTSP was prepared as a requirement for acceptance under the US Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive materials. This LTSP documents whether the land and interests are owned by the United States or an Indian tribe, and details how the long-term care of the disposal site will be carried out. It is based on the DOE`s Guidance for Implementing the UMTRA Project Long-term Surveillance Program (DOE, 1992a).
Date: December 1, 1993
Creator: unknown
Object Type: Report
System: The UNT Digital Library
Long-Term Surveillance Plan for the Shiprock Disposal Site, Shiprock, New Mexico (open access)

Long-Term Surveillance Plan for the Shiprock Disposal Site, Shiprock, New Mexico

The long-term surveillance plan (LTSP) for the Shiprock, New Mexico, Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site describes the surveillance activities for the Shiprock disposal cell. The US Department of Energy (DOE) will carry out these activities to ensure that the disposal cell continues to function as designed. This final LTSP is being submitted to the US Nuclear Regulatory Commission (NRC) as a requirement for issuance of a general license for custody and long-term care for the disposal site. The general license requires that the disposal cell be cared for in accordance with the provisions of this LTSP. This Shiprock, New Mexico, LTSP documents whether the land and interests are owned by the US or an Indian tribe and describes in detail the long-term care program through the UMTRA Project Office.
Date: December 1, 1993
Creator: unknown
Object Type: Report
System: The UNT Digital Library
Surface and subsurface cleanup protocol for radionuclides, Gunnison, Colorado, UMTRA project processing site. Final report: Revision 1 (open access)

Surface and subsurface cleanup protocol for radionuclides, Gunnison, Colorado, UMTRA project processing site. Final report: Revision 1

Surface and subsurface soil cleanup protocols for the Gunnison, Colorado, processing site are summarized as follows: In accordance with EPA-promulgated land cleanup standards, in situ Ra-226 is to be cleaned up based on bulk concentrations not exceeding 5 and 15 pCi/g in 15-cm surface and subsurface depth increments, averaged over 100m{sup 2} grid blocks, where the parent Ra-226 concentrations are greater than, or in secular equilibrium with, the Th-230 parent. In locations where Th-230 has differentially migrated in subsoil relative to Ra-226, a Th-230 clean up protocol has been developed. The cleanup of other radionuclides or nonradiological hazards that pose a significant threat to the public and the environment will be determined and implemented in accordance with pathway analysis to assess impacts and the implications of ALARA specified in 40 CFR Part 192 relative to supplemental standards.
Date: December 1993
Creator: Gonzales, D.
Object Type: Report
System: The UNT Digital Library