Analysis of Devonian Black Shales in Kentucky for Potential Carbon Dioxide Sequestration and Enhanced Natural Gas Production Quarterly Report: April-June 2005 (open access)

Analysis of Devonian Black Shales in Kentucky for Potential Carbon Dioxide Sequestration and Enhanced Natural Gas Production Quarterly Report: April-June 2005

Devonian gas shales underlie approximately two-thirds of Kentucky. In the shale, natural gas is adsorbed on clay and kerogen surfaces. This is analogous to methane storage in coal beds, where CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. Drill cuttings from the Kentucky Geological Survey Well Sample and Core Library were sampled to determine CO{sub 2} and CH{sub 4} adsorption isotherms. Sidewall core samples were acquired to investigate CO{sub 2} displacement of methane. An elemental capture spectroscopy log was acquired to investigate possible correlations between adsorption capacity and mineralogy. Average random vitrinite reflectance data range from 0.78 to 1.59 (upper oil to wet gas and condensate hydrocarbon maturity range). Total organic content determined from acid-washed samples ranges from 0.69 to 14 percent. CO{sub 2} adsorption capacities at 400 psi range from a low of 14 scf/ton in less organic-rich zones to more than 136 scf/ton. There is a direct correlation between measured total organic carbon content and the adsorptive capacity of the shale; CO{sub 2} adsorption capacity increases with increasing organic carbon content. Initial estimates based on these data indicate a sequestration capacity of 5.3 billion tons of CO{sub …
Date: July 29, 2005
Creator: Nuttall, Brandon C.
System: The UNT Digital Library
Geology and Stratigraphy of the Building 812 Area, Site 300, Lawrence Livermore National Laboratory (open access)

Geology and Stratigraphy of the Building 812 Area, Site 300, Lawrence Livermore National Laboratory

The purpose of this project is to gain a better understanding of the stratigraphy and geologic structure of the Building 812 Area, Site 300 (Figure 1). This analysis is designed to help better delineate hydrostratigraphic units (HSUs) in order to enhance the understanding of the fate and transport of contaminants in the subsurface. The results of this investigation will assist Lawrence Livermore National Laboratory (LLNL) hydrogeologists to conduct work in a more focused and cost effective manner. This document is submitted to fulfill contract obligations for subcontract B530530.
Date: July 13, 2005
Creator: Ehman, Kenneth D.
System: The UNT Digital Library
Exploitation and Optimization of Reservoir Performance in Hunton Formation, Oklahoma Quarterly Technical Progress Report: April-June 2005 (open access)

Exploitation and Optimization of Reservoir Performance in Hunton Formation, Oklahoma Quarterly Technical Progress Report: April-June 2005

West Carney field--one of the newest fields discovered in Oklahoma--exhibits many unique production characteristics. These characteristics include: (1) decreasing water-oil ratio; (2) decreasing gas-oil ratio followed by an increase; (3) poor prediction capability of the reserves based on the log data; and (4) low geological connectivity but high hydrodynamic connectivity. The purpose of this investigation is to understand the principal mechanisms affecting the production, and propose methods by which we can extend the phenomenon to other fields with similar characteristics. In our experimental investigation section, we continue to describe the use of surfactant to alter the wettability of the rock. By altering the wettability, we should be able to change the water-gas ratio in the reservoir and, hence, improve the productivity from the well. In our Engineering and Geological Analysis section, we present our rock typing analysis work which combines the geological data with engineering data to develop a unique rock characteristics description. The work demonstrates that it is possible to incorporate geological description in engineering analysis so that we can come up with rock types which have unique geological characteristics, as well as unique petrophysical characteristics. Using this rock typing scheme, we intend to develop a detailed reservoir description …
Date: July 1, 2005
Creator: Kelkar, Mohan
System: The UNT Digital Library