Biological Nitrogen Fixation in Two Southwestern Reservoirs (open access)

Biological Nitrogen Fixation in Two Southwestern Reservoirs

This investigation has determined the presence of biological nitrogen fixation in two reservoirs in the southwestern United States: Lake Arlington and Lake Ray Hubbard. Subsequent tests have gathered baseline data on the effects of various biological, chemical, and physical parameters on in situ nitrogen fixation in these reservoirs. Of specific importance is the relationship between nitrogen fixation arid occasional blooms of blue-green algae which produce such problems as testes and odors in these water-supply impoundments.
Date: August 1973
Creator: Lawley, Gary G.
System: The UNT Digital Library
Effects of Water Quality, Instream Toxicity, and Habitat Variability on Fish Assemblages in the Trinity River, Texas (open access)

Effects of Water Quality, Instream Toxicity, and Habitat Variability on Fish Assemblages in the Trinity River, Texas

The Trinity River flows through the Dallas-Ft. Worth Metroplex in north central Texas where it receives effluents from numerous point sources including seven large regional wastewater treatment facilities. Historically, the Trinity River has been impacted by massive wastewater loadings which often constitute > 80% of the total river discharge during low flow periods. Normally, high mass loadings correspond to the summer months, compounding the effects of a naturally stressful period, characterized by high temperatures and low dissolved oxygen concentrations. Samples from 12 stations were collected quarterly over an 18 month period from the Trinity River and two tributaries. Water samples were analyzed for a variety of water quality variables, including metals, priority pollutants, pesticides, and general water quality parameters. Water samples were also tested for acute and subchronic effects with several test species. Fish were collected at each station and assemblages were characterized using traditional classification techniques and the Index of Biotic Integrity. In addition, sediment samples were assessed for toxic effects which could have adversely impacted fish recruitment and in situ biomonitoring experiments were performed. Quantitative habitat characterization analyses were performed to gain additional information that could possibly explains differences in fish assemblage structure related to habitat variability. Data …
Date: December 1989
Creator: Arnold, Winfred R., 1960-
System: The UNT Digital Library
Toxicological Characterization of Trinity River Sediments (open access)

Toxicological Characterization of Trinity River Sediments

Sediments in the Trinity River were chemically, physically and biologically characterized and assessed for toxicity. Laboratory bioassays were conducted to identify sediments which induced toxic responses in test organisms and to document these responses through time. Metal and organic contaminant concentrations in bottom sediments were measured. Relationships between these concentrations and biological responses observed in laboratory bioassays were determined. Toxicity identification / reduction methods were used to characterize sediment toxicants. Sediment oxygen demand was also measured in resuspended and undisturbed bottom sediments through time. The Background Sediment Chemistry Approach and the Sediment Bioassay Approach were used to assess sediment quality. Sediment toxicity was observed in whole sediment bioassays using Chironomus tentans as the test species. A relationship between sediment contaminant concentration and toxicity was observed in approximately sixty percent of the sediments. Oxygen demand of resuspended sediments was elevated in sediments at two locations on the river. Oxygen demand of undisturbed sediments was elevated at one location on the river. Characterization of sediment toxicants was conducted using EDTA, pH, and carbon treatments and manipulations of the sediments. Aeration tests were also used to evaluate the contribution of volatile organic contaminants to observed toxicity.
Date: December 1989
Creator: Hall, Jerry F. (Jerry Fowler)
System: The UNT Digital Library
Effects of a Water Conservation Education Program on Water Use in Single-family Homes in Dallas, Texas (open access)

Effects of a Water Conservation Education Program on Water Use in Single-family Homes in Dallas, Texas

The City of Dallas Environmental Education Initiative (EEI) is a hands-on, inquiry-based, K-12 water conservation education program that teaches students concepts about water and specific water conservation behaviors. Few descriptions and evaluations, especially quantitative in nature, of water conservation education programs have previously been conducted in the literature. This research measured the quantitative effects and impacts of the education program on water use in single-family homes in Dallas, Texas. A total of 2,122 students in 104 classrooms at three schools in the Dallas Independent School District received hands-on, inquiry-based water conservation education lessons and the average monthly water use (in gallons) in single-family homes was analyzed to measure whether or not there was a change in water use. The results showed that over a period of one calendar year the water use in the single-family homes within each school zone and throughout the entire research area in this study experienced a statistically significant decrease in water use of approximately 501 gallons per home per month (independent, t-test, p>0.001). Data from this research suggests that EEI is playing a role in decreasing the amount of water used for residential purposes. Additionally, this research demonstrates the use of a quantitative tool by …
Date: December 2014
Creator: Serna, Victoria Faubion
System: The UNT Digital Library

Biomonitoring at Dallas-Fort Worth International Airport: Relating Watershed Land Use with Aquatic Life Use

The Dallas-Fort Worth International (DFW) Airport is located in a densely urbanized area with one of the fastest-growing populations in the U.S.A. The airport property includes a large tract of "protected" riparian forest that is unique to the urban surroundings. This dissertation explores variables that influence the benthic macroinvertebrate community structure found in urbanized prairie streams that were initially assessed by the University of North Texas (UNT) Benthic Ecology Lab during four, non-consecutive biomonitoring studies (2004, 2005, 2008, and 2014) funded by the DFW Airport. Additionally, land use analysis was performed using 5-meter resolution satellite imagery and eCognition to characterize the imperviousness of the study area watersheds at multiple scales. Overall, flow conditions and imperviousness at the watershed scale explained the most variability in the benthic stream community. Chironomidae taxa made up 20-50% of stream communities and outperformed all other taxa groups in discriminating between sites of similar flows and urban impairments. This finding highlights the need for genus level identifications of the chironomid family, especially as the dominant taxa in urban prairie streams. Over the course of these biomonitoring survey events, normal flow conditions and flows associated with supra-seasonal drought were experienced. Prevailing drought conditions of 2014 did not …
Date: August 2021
Creator: Harlow, Megann Mae Lewis
System: The UNT Digital Library

Ozone Pollution Monitoring and Population Vulnerability in Dallas-Ft. Worth: A Decision Support Approach

In urban environments, ozone air pollution, poses significant risks to respiratory health. Fixed site monitoring is the primary method of measuring ozone concentrations for health advisories and pollutant reduction, but the spatial scale may not reflect the current population distribution or its future growth. Moreover, formal methods for the placement of ozone monitoring sites within populations potentially omit important spatial criteria, producing monitoring locations that could unintentionally underestimate the exposure burden. Although air pollution affects all people, the combination of underlying health, socioeconomic and demographic factors exacerbate the impact for socially vulnerable population groups. A need exists for assessing the spatial representativeness and data gaps of existing pollution sensor networks and to evaluate future placement strategies of additional sensors. This research also seeks to understand how air pollution monitor placement strategies may neglect social vulnerabilities and therefore, potentially underestimate exposure burdens in vulnerable populations.
Date: August 2021
Creator: Northeim, Kari M.
System: The UNT Digital Library