3D Printed Self-Activated Carbon Electrodes for Supercapacitor Applications (open access)

3D Printed Self-Activated Carbon Electrodes for Supercapacitor Applications

This study investigated a new approach to achieving high energy density supercapacitors (SCs) by using high surface area self-activated carbon from waste coffee grounds (WCGs) and modifying 3D printed electrodes' porous structure by varying infill density. The derived activated carbons' surface area, pore size, and pore volume were controlled by thermally treating the WCGs at different temperatures (1000˚C, 1100˚C, and 1200˚C) and post-treating with HCL to remove water-soluble ashes and contaminants that block activated carbon pores. Surface area characterization revealed that the carbon activated at 1000˚C had the highest surface of 1173.48 m2 g-1, and with the addition of HCL, the surface area increased to 1209.35 m2 g-1. This activated carbon was used for fabricating the electrodes based on the surface area and having both micropores and macropores, which are beneficial for charge storage. Direct ink writing (DIW) method was utilized for 3D printing SC electrodes and changing the electrode structure by increasing the infill densities at 30%, 50%, and 100%. Upon increasing the infill densities, the electrodes' mass increased linearly, porosity decreased, and the total surface area increased for the 30% and 50% infill electrodes but decreased for the 100% infill electrode. Cyclic voltammetry (CV) test on the assembled …
Date: July 2023
Creator: Disi, Onome Aghogho
System: The UNT Digital Library

3D Printing of Zinc Anode for Zinc Ion Batteries

Recently, 3D printing has received increasing attention for the fabrication and assembly of electrodes for batteries due to the freedom of creating structures in any shape or size, porosity, flexibility, stretchability, and chemistry. Particularly, zinc ion batteries (ZIBs) are favored due to high safety, cheap materials cost, and high volumetric capacity (5,849 mAh/cm3), however, rapid evaporation of Zn due to low melting temperature has limited its 3D printability via conventional laser-based additive manufacturing technique. Here, we develop a printable ink for the fabrication of flexible and 3D printed Zn anode with varied surface areas using the direct ink writing (DIW) method. Our 3D printed porous and high surface area Zn anode structures effectively suppressed the dendrite growth while providing high Zn ion diffusion towards the cathode to significantly enhance the performance of ZIB. By varying filament distancing and path, we 3D printed zinc anode structures with different active surface areas, surface area to volume ratio, porosity, flexible and multiple layer structures that can be incorporated on any device. Carbon in the composite improved conductivity, and mechanical stability of 3D printed zinc anode. Our 3D printed composite anodes allowed flexible designing of batteries surpassing conventional battery designs such as coin cells …
Date: December 2021
Creator: Amoko, Stephen Adot Oyo
System: The UNT Digital Library
Adhesion and Surface Energy Profiles of Large-area Atomic Layers of Two-dimensional MoS2 on Rigid Substrates by Facile Methods (open access)

Adhesion and Surface Energy Profiles of Large-area Atomic Layers of Two-dimensional MoS2 on Rigid Substrates by Facile Methods

Two-dimensional (2D) transition metal dichalcogenides (TMDs) show great potential for the future electronics, optoelectronics and energy applications. But, the studies unveiling their interactions with the host substrates are sparse and limits their practical use for real device applications. We report the facile nano-scratch method to determine the adhesion energy of the wafer scale MoS2 atomic layers attached to the SiO2/Si and sapphire substrates. The practical adhesion energy of monolayer MoS2 on the SiO2/Si substrate is 7.78 J/m2. The practical adhesion energy was found to be an increasing function of the MoS2 thickness. Unlike SiO2/Si substrates, MoS2 films grown on the sapphire possess higher bonding energy, which is attributed to the defect-free growth and less number of grain boundaries, as well as less stress and strain stored at the interface owing to the similarity of Thermal Expansion Coefficient (TEC) between MoS2 films and sapphire substrate. Furthermore, we calculated the surface free energy of 2D MoS2 by the facile contact angle measurements and Neumann model fitting. A surface free energy ~85.3 mJ/m2 in few layers thick MoS2 manifests the hydrophilic nature of 2D MoS2. The high surface energy of MoS2 helps explain the good bonding strength at MoS2/substrate interface. This simple adhesion …
Date: May 2016
Creator: Wu, Min
System: The UNT Digital Library

Aerodynamic Optimization of a 2D Airfoil for Rotary-Wing Aircraft at Mars Atmospheric Conditions

The interest toward Mars exploration has been considerably increasing due to also the successful deployment of the Perseverance rover and the continuous tests developed by SpaceX's launch vehicle, Starship. While the Mars 2020 mission is currently in progress, the first controlled flight on another planet have been proven in April 2021 with the vertical take-off and landing of the Ingenuity rotorcraft on Mars. In addition, the rotorcraft Dragonfly is expected to achieve the same endeavor in Titan, the largest moon of Saturn, by 2036. Continuous efforts have been oriented toward the development of new technologies and aircraft configurations to improve the performance of current proposed designs to achieve powered flight in different planetary bodies. This thesis work is a preliminary study to develop a comprehensive analysis over the generation of optimum airfoil geometries to achieve vertical flight in environments where low Reynolds numbers and Mach number equal to 0.2 and 0.5.
Date: December 2021
Creator: Saez, Aleandro G.
System: The UNT Digital Library
Analysis of Heat Transfer Enhancement in Channel Flow through Flow-Induced Vibration (open access)

Analysis of Heat Transfer Enhancement in Channel Flow through Flow-Induced Vibration

In this research, an elastic cylinder that utilized vortex-induced vibration (VIV) was applied to improve convective heat transfer rates by disrupting the thermal boundary layer. Rigid and elastic cylinders were placed across a fluid channel. Vortex shedding around the cylinder led to the periodic vibration of the cylinder. As a result, the flow-structure interaction (FSI) increased the disruption of the thermal boundary layer, and therefore, improved the mixing process at the boundary. This study aims to improve convective heat transfer rate by increasing the perturbation in the fluid flow. A three-dimensional numerical model was constructed to simulate the effects of different flow channel geometries, including a channel with a stationary rigid cylinder, a channel with a elastic cylinder, a channel with two elastic cylinders of the same diameter, and a channel with two elastic cylinders of different diameters. Through the numerical simulations, the channel maximum wall temperature was found to be reduced by approximately 10% with a stationary cylinder and by around 17% when introducing an elastic cylinder in the channel compared with the channel without the cylinder. Channels with two-cylinder conditions were also studied in the current research. The additional cylinder with the same diameter in the fluid channel …
Date: December 2017
Creator: Kota, Siva Kumar k
System: The UNT Digital Library
Analysis of Sources Affecting Ambient Particulate Matter in Brownsville, Texas (open access)

Analysis of Sources Affecting Ambient Particulate Matter in Brownsville, Texas

Texas is the second largest state in U.S.A. based on geographical area, population and the economy. It is home to several large coastal urban areas with major industries and infrastructure supporting the fossil-fuel based energy sector. Most of the major cities on the state have been impacted by significant air pollution events over the past decade. Studies conducted in the southern coastal region of TX have identified long range transport as a major contributor of particulate matter (PM) pollution along with local emissions. Biomass burns, secondary sulfates and diesel emissions sources are comprise as the dominant mass of PM2.5 have been noted to be formed by the long range transport biomass from Central America. Thus, the primary objective of this study was to identify and quantify local as well as regional sources contributing to the PM pollution in the coastal area of Brownsville located along the Gulf of Mexico. Source apportionment techniques such as principal component analysis (PCA) and positive matrix factorization (PMF) were employed on the air quality monitoring data to identify and quantify local and regional sources affecting this coastal region. As a supplement to the PMF and PCA, conditional probability function (CPF) analysis and potential source contribution …
Date: May 2012
Creator: Diaz Poueriet, Pablo
System: The UNT Digital Library
Analyze and Rebuild an Apparatus to Gauge Evaporative Cooling Effectiveness of Micro-Porous Barriers. (open access)

Analyze and Rebuild an Apparatus to Gauge Evaporative Cooling Effectiveness of Micro-Porous Barriers.

The sample used for evaporative cooling system is Fabric defender 750 with Shelltite finish. From the experimental data and equations we have diffusion coefficient of 20.9 ± 3.71 x 10-6 m2/s for fabric with one layer with 17%-20% fluctuations from the theory, 27.8 ± 4.5 x 10-6 m2/s for fabric with two layers with 6%-14% fluctuations from the theory and 24.9 ± 4.1 x 10-6 m2/s for fabric with three layers with 13%-16% fluctuations from the theory. Since the thickness of the fabric increases so the mass transport rate decreases so the mass transport resistance should be increases. The intrinsic mass resistances of Fabri-1L, Fabri-2L and Fabri-3L are respectively 104 ± 10.2 s/m, 154 ± 23 s/m and 206 ± 26 s/m from the experiment.
Date: December 2008
Creator: Mohiti Asli, Ali
System: The UNT Digital Library
Application of High Entropy Alloys in Stent Implants (open access)

Application of High Entropy Alloys in Stent Implants

High entropy alloys (HEAs) are alloys with five or more principal elements. Due to these distinct concept of alloying, the HEA exhibits unique and superior properties. The outstanding properties of HEA includes higher strength/hardness, superior wear resistance, high temperature stability, higher fatigue life, good corrosion and oxidation resistance. Such characteristics of HEA has been significant interest leading to researches on these emerging field. Even though many works are done to understand the characteristic of these HEAs, very few works are made on how the HEAs can be applied for commercial uses. This work discusses the application of High entropy alloys in biomedical applications. The coronary heart disease, the leading cause of death in the United States kills more than 350,000 persons/year and it costs $108.9 billion for the nation each year in spite of significant advancements in medical care and public awareness. A cardiovascular disease affects heart or blood vessels (arteries, veins and capillaries) or both by blocking the blood flow. As a surgical interventions, stent implants are deployed to cure or ameliorate the disease. However, the high failure rate of stents has lead researchers to give special attention towards analyzing stent structure, materials and characteristics. Many works related to …
Date: May 2017
Creator: Alagarsamy, Karthik
System: The UNT Digital Library
Artificial Neural Network Based Thermal Conductivity Prediction of Propylene Glycol Solutions with Real Time Heat Propagation Approach (open access)

Artificial Neural Network Based Thermal Conductivity Prediction of Propylene Glycol Solutions with Real Time Heat Propagation Approach

Machine learning is fast growing field as it can be applied to solve a large amount of problems. One large subsection of machine learning are artificial neural networks (ANN), these work on pattern recognition and can be trained with data sets of known solutions. The objective of this thesis is to discuss the creation of an ANN capable of classifying differences in propylene glycol concentrations, up to 10%. Utilizing a micro pipette thermal sensor (MTS) it is possible to measure the heat propagation of a liquid from a laser pulse. The ANN can then be trained beforehand with simulated data and be tested in real time with temperature data from the MTS. This method could be applied to find the thermal conductivity of unknown fluids and biological samples, such as cells and tissues.
Date: August 2022
Creator: Jarrett, Andrew Caleb
System: The UNT Digital Library
Bioinspired & biocompatible coatings of poly(butylene adipate-co-terephthalate) and layer double hydroxide composites for corrosion resistance (open access)

Bioinspired & biocompatible coatings of poly(butylene adipate-co-terephthalate) and layer double hydroxide composites for corrosion resistance

Hierarchical arrangement of biological composites such as nacre and bone containing high filler (ceramic) content results in high strength and toughness of the natural material. In this study we mimic the design of layered bone microstructure and fabricate an optimal multifunctional bio-nanocomposite having strength, toughness and corrosion resistance. Poly (butylene adipate-co-terephthalate) (PBAT), a biodegradable polymer was used as a substrate material with the reinforcement of LDH (Layered double hydroxide) as a nanofiller in different concentrations to achieve enhancement in mechanical properties as well as processing related thermostability. Corrosion resistance was increased by mimicking a layered structured which incorporated a tortuous diffusion path.
Date: May 2016
Creator: Rizvi, Hussain R.
System: The UNT Digital Library

CFD Study of Ship Hydrodynamics in Calm Water with Shear Current and in Designed Wave Trails

Although the capability of computational fluid dynamics (CFD) in modeling ship hydrodynamics is well explored in many studies, they still have two main limitations. First, those studies ignore the effect of non-uniform shear current which exists in realistic situation. Second, the focus of most studies was laid more on the seakeeping/maneuvering performance and less attention was paid to survivability of ships due to extreme ship response events in waves, which are considered rare events but influential. In this thesis, we explore the capability of CFD in those two areas. In the first part of the thesis, the hydrodynamic performance of KCS in the presence of a non-uniform shear current is investigated for the first time using high-fidelity CFD simulations. Various shear current conditions with different directions were considered and results were compared with the ones with no shear current. The second part of the thesis focuses on study of rare events of ship responses by development of extreme response conditioning techniques to design the wave trail. Two conditioned techniques based on Gaussian and non-Gaussian processes are considered.
Date: May 2022
Creator: Phan, Khang Minh
System: The UNT Digital Library
Characterization of Viscoelastic Properties of a Material Used for an Additive Manufacturing Method (open access)

Characterization of Viscoelastic Properties of a Material Used for an Additive Manufacturing Method

Recent development of additive manufacturing technologies has led to lack of information on the base materials being used. A need arises to know the mechanical behaviors of these base materials so that it can be linked with macroscopic mechanical behaviors of 3D network structures manufactured from the 3D printer. The main objectives of my research are to characterize properties of a material for an additive manufacturing method (commonly referred to as 3D printing). Also, to model viscoelastic properties of Procast material that is obtained from 3D printer. For this purpose, a 3D CAD model is made using ProE and 3D printed using Projet HD3500. Series of uniaxial tensile tests, creep tests, and dynamic mechanical analysis are carried out to obtained viscoelastic behavior of Procast. Test data is fitted using various linear and nonlinear viscoelastic models. Validation of model is also carried out using tensile test data and frequency sweep data. Various other mechanical characterization have also been carried out in order to find density, melting temperature, glass transition temperature, and strain rate dependent elastic modulus of Procast material. It can be concluded that melting temperature of Procast material is around 337°C, the elastic modulus is around 0.7-0.8 GPa, and yield …
Date: December 2013
Creator: Iqbal, Shaheer
System: The UNT Digital Library
Conceptual Framework for the Development of an Air Quality Monitoring Station in Denton, Texas (open access)

Conceptual Framework for the Development of an Air Quality Monitoring Station in Denton, Texas

Denton, Texas consistently reaches ozone nonattainment levels. This has led to a large focus of air pollution monitoring efforts in the region, with long-range transport being explored as a key contributor. For this study, the University of North Texas Discovery Park campus was chosen as a prospective location for an extensive air quality monitoring station. Sixteen years of ozone and meteorological data for five state-run monitoring sites within a 25 mile radius, including the nearest Denton Airport site, was gathered from TCEQ online database for the month of April for the years 2000 to 2015. The data was analyzed to show a historical, regional perspective of ozone near the proposed site. The maximum ozone concentration measured at the Denton Airport location over the 16 year period was measured at 96 ppb in 2001. Experimental ozone and meteorological measurements were collected at the Discovery Park location from March 26 to April 3 and April 8 to April, 2016 and compared to the Denton Airport monitoring site. A time lag in ozone trends and an increase in peak ozone concentrations at the proposed location were observed at the proposed site in comparison to the Denton Airport site. Historical and experimental meteorological data …
Date: August 2016
Creator: Boling, Robyn
System: The UNT Digital Library
Deleterious Synergistic Effects of Concurrent Magnetic Field and Superparamagnetic (Fe3O4) Nanoparticle Exposures on CHO-K1 Cell Line (open access)

Deleterious Synergistic Effects of Concurrent Magnetic Field and Superparamagnetic (Fe3O4) Nanoparticle Exposures on CHO-K1 Cell Line

While many investigations have been performed to establish a better understanding of the effects that magnetic fields and nanoparticles have on cells, the fundamental mechanisms behind the interactions are still yet unknown, and investigations on concurrent exposure are quite limited in scope. This study was therefore established to investigate the biological impact of concurrent exposure to magnetic nanoparticles and extremely-low frequency magnetic fields using an in-vitro CHO-K1 cell line model, in an easily reproducible manner to establish grounds for further in-depth mechanistic, proteomic, and genomic studies. Cells were cultured and exposed to 10nm Fe3O4 nanoparticles, and DC or low frequency (0Hz, 50Hz, and 100Hz) 2.0mT magnetic fields produced by a Helmholtz coil pair. The cells were then observed under confocal fluorescence microscopy, and subject to MTT biological assay to determine the synergistic effects of these concurrent exposures. No effects were observed on cell morphology or microtubule network; however, cell viability was observed to decrease more drastically under the combined effects of magnetic field and nanoparticle exposures, as compared to independent exposures alone. It was concluded that no significant difference was observed between the types of magnetic fields, and their effects on the nanoparticle exposed cells, but quite clearly there are …
Date: May 2015
Creator: Coker, Zachary
System: The UNT Digital Library
Denim Fiberboard Fabricated from MUF and pMDI Hybrid Resin System (open access)

Denim Fiberboard Fabricated from MUF and pMDI Hybrid Resin System

In this study, a series of denim fiberboards are fabricated using two different resins, malamine urea formaldehyde (MUF) and polymeric methylene diphenyl diisocyanate (pMDI). Two experimental design factors (1) adhesive content and (2) MUF-pMDI weight ratio, were studied. All the denim fiberboard samples were fabricated following the same resin blending, cold-press and hot-press procedures. The physical and mechanical tests were conducted on the fiberboard following the procedures described in ASTM D1037 to obtain such as modulus of elasticity (MOE), modulus of rupture (MOR), internal bond (IB), thickness swell (TS), and water absorption (WA). The results indicated that the MOE was significantly affected by both factors. IB was affected significantly by weight ratio of different glue types, with 17 wt% more MDI resin portion in the core layer of the denim boards, the IB for total adhesive content 15% fiberboard was enhanced by 306%, while for total adhesive content 25% fiberboard, enhanced by 205%. TS and WA, with higher adhesive content used in denim boards' fabrication, and more pMDI portion in the core layer of the boards, the boards' TS and WA was reduced by up to 64.2% and 78.8%, respectively.
Date: May 2019
Creator: Cui, Zhiying
System: The UNT Digital Library

Design, Fabrication and Testing of a Novel Dual-Axis Automatic Solar Tracker System Using a Fresnel-Lens Solar Concentrator

This thesis project investigates, analyzes, designs, simulates, constructs and tests a dual-axis solar tracker system to track the sun and concentrates the heat of the sunlight, using a Fresnel lens, into a small area, which is above of an evaporator, to increase the temperature of the seawater to convert it into freshwater. The dual-axis solar tracker was designed with the main objectives that the structure was portable, dismountable, lightweight, low cost, corrosion resistant, wires inside pipes, accurate, small size, follow the sun automatically, off-grid (electrical), use green energy (solar powered), and has an empty area right below of the lens. First, a 500 mm diameter flat Fresnel lens was selected and simulated based on an algorithmic method achieved by a previous PhD student at UNT using MATLAB®, to give the optimization lens dimensions. The lens profile was drawn with AutoCAD®, then output profile lens was simulated in COMSOL Multiphysics®. The objective was to provide the high efficiency, optimum and high precision of the focal rays and heat to the receiver of the evaporator. A novel dual-axis solar tracker system was then designed that is portable, dismountable, lightweight and corrosion resistant. The solar tracker tracks the sun in two axis of …
Date: August 2021
Creator: Almara, Laura Mabel
System: The UNT Digital Library
Design of a Lower Extremity Exoskeleton to Increase Knee ROM during Valgus Bracing for Osteoarthritic Gait (open access)

Design of a Lower Extremity Exoskeleton to Increase Knee ROM during Valgus Bracing for Osteoarthritic Gait

Knee osteoarthritis (KOA) is the primary cause of chronic immobility in populations over the age of 65. It is a joint degenerative disease in which the articular cartilage in the knee joint wears down over time, leading to symptoms of pain, instability, joint stiffness, and misalignment of the lower extremities. Without intervention, these symptoms gradually worsen over time, decreasing the overall knee range of motion (ROM) and ability to walk. Current clinical interventions include offloading braces, which mechanically realign the lower extremities to alleviate the pain experienced in the medial compartment of the knee joint. Though these braces have proven effective in pain management, studies have shown a significant decrease in knee ROM while using the brace. Concurrently, development of active exoskeletons for rehabilitative gait has increased within recent years in efforts to provide patients with a more effective intervention for dealing with KOA. Though some developed exoskeletons are promising in their efficacy of fostering gait therapy, these devices are heavy, tethered, difficult to control, unavailable to patients, or costly due to the number of complicated components used to manufacture the device. However, the idea that an active component can improve gait therapy for patients motivates this study. This study …
Date: May 2017
Creator: Cao, Jennifer M.
System: The UNT Digital Library
Development of a Cost Effective Wireless Sensor System for Indoor Air Quality Monitoring Applications (open access)

Development of a Cost Effective Wireless Sensor System for Indoor Air Quality Monitoring Applications

Poor air quality can greatly affect the public health. Research studies indicate that indoor air can be more polluted than the outdoor air. An indoor air quality monitoring system will help to create an awareness of the quality of air inside which will eventually help in improving it. The objective of this research is to develop a low cost wireless sensor system for indoor air quality monitoring. The major cost reduction of the system is achieved by using low priced sensors. Interface circuits had to be designed to make these sensors more accurate. The system is capable of measuring carbon dioxide, carbon monoxide, ozone, temperature, humidity and volatile organic compounds. The prototype sensor node modules were developed. The sensor nodes were the connected together by Zigbee network. The nodes were developed in such a way that it is compact in size and wireless connection of sensor nodes enable to collect air quality data from multiple locations simultaneously. The collected data was stored in a computer. We employed linear least-square approach for the calibration of each sensor to derive a conversion formula for converting the sensor readings to engineering units. The system was tested with different pollutants and data collected was …
Date: May 2014
Creator: Abraham, Sherin
System: The UNT Digital Library
Development of a Natural Fiber Mat Plywood Composite (open access)

Development of a Natural Fiber Mat Plywood Composite

Natural fibers like kenaf, hemp, flax and sisal fiber are becoming alternatives to conventional petroleum fibers for many applications. One such applications is the use of Non-woven bio-fiber mats in the automobile and construction industries. Non-woven hemp fiber mats were used to manufacture plywood in order to optimize the plywood structure. Hemp fiber mats possess strong mechanical properties that comparable to synthetic fibers which include tensile strength and tensile modulus. This study focuses on the use of hemp fiber mat as a core layer in plywood sandwich composite. The optimization of fiber mat plywood was done by performing a three factor experiment. The three factors selected for this experiment were number of hemp mat layers in the core, mat treatment of the hemp mat, and the glue content in the core. From the analysis of all treatments it was determined that single hemp mat had the highest effect on improving the properties of the plywood structure.
Date: August 2017
Creator: Anthireddy, Prasanna Kumar
System: The UNT Digital Library

Development of an Enclosed Evaporation Chamber Utilizing a Fresnel Lens Solar Concentrator

This thesis project investigates the configuration of an enclosed evaporation chamber with the intention of converting seawater into potable freshwater. The evaporation chamber's sole heat source is provided by a Fresnel lens, located above the chamber, which concentrates sunlight onto a 3-inch diameter focal plate built into the core of the chamber. The design of the evaporation chamber is modeled after a solar still and is coupled with a heat exchanger to boost efficiency of the system. The chamber was designed with the objectives of being portable, lightweight, low cost, corrosion resistant, interchangeable, and size convenient with the goal of producing 1 Liter of freshwater per hour of operation. The evaporation chamber consists of two primary components, a core and an attached arrangement of fins, all of which are heated via the Fresnel lens. A consistent intake of 2 grams/second of saltwater enters from the top of the chamber and is then gravity fed across the fins. Fin orientation has been designed to inhibit the flow rate of water within the chamber, maximizing the surface area of contact with the heated fins. The evaporation chamber was modeled through SOLIDWORKS and underwent a physical optimization study to reduce material usage while …
Date: August 2022
Creator: Planz, Bridger T
System: The UNT Digital Library
Dissimilar Friction Stir Welding Between Magnesium and Aluminum Alloys (open access)

Dissimilar Friction Stir Welding Between Magnesium and Aluminum Alloys

Joining two dissimilar metals, specifically Mg and Al alloys, using conventional welding techniques is extraordinarily challenging. Even when these alloys are able to be joined, the weld is littered with defects such as cracks, cavities, and wormholes. The focus of this project was to use friction stir welding to create a defect-free joint between Al 2139 and Mg WE43. The stir tool used in this project, made of H13 tool steel, is of fixed design. The design included an 11 mm scrolled and concave shoulder in addition to a 6 mm length pin comprised of two tapering, threaded re-entrant flutes that promoted and amplified material flow. Upon completion of this project an improved experimental setup process was created as well as successful welds between the two alloys. These successful joints, albeit containing defects, lead to the conclusion that the tool used in project was ill fit to join the Al and Mg alloy plates. This was primarily due to its conical shaped pin instead of the more traditional cylindrical shaped pins. As a result of this aggressive pin design, there was a lack of heat generation towards the bottom of the pin even at higher (800-1000 rpm) rotation speeds. This …
Date: December 2016
Creator: Reese, Gregory A
System: The UNT Digital Library
Dissimilar Joining of Al (AA2139) – Mg (WE43) Alloys Using Friction Stir Welding (open access)

Dissimilar Joining of Al (AA2139) – Mg (WE43) Alloys Using Friction Stir Welding

This research demonstrates the use of friction stir welding (FSW) to join dissimilar (Al-Mg) metal alloys. The main challenges in joining different, dissimilar metal alloys is the formation of brittle intermetallic compounds (IMCs) in the stir zone affecting mechanical properties of joint significantly. In this present study, FSW joining process is used to join aluminum alloy AA2139 and magnesium alloy WE43. The 9.5 mm thick plates of AA2139 and WE43 were friction stir butt welded. Different processing parameters were used to optimize processing parameters. Also, various weldings showed a crack at interface due to formation of IMCs caused by liquation during FSW. A good strength sound weld was obtained using processing parameter of 1200 rev/min rotational speed; 76.2 mm/min traverse speed; 1.5 degree tilt and 0.13 mm offsets towards aluminum. The crack faded away as the tool was offset towards advancing side aluminum. Mostly, the research was focused on developing high strength joint through microstructural control to reduce IMCs thickness in Al-Mg dissimilar weld joint with optimized processing parameter and appropriate tool offset.
Date: December 2016
Creator: Poudel, Amir
System: The UNT Digital Library
Effect of Dispersed Particles and Branching on the Performance of a Medium Temperature Thermal Energy Storage System (open access)

Effect of Dispersed Particles and Branching on the Performance of a Medium Temperature Thermal Energy Storage System

The main objective of my thesis is to develop a numerical model for small-scale thermal energy storage system and to see the effect of dispersing nano-particles and using fractal-like branching heat exchanger in phase change material for our proposed thermal energy storage system. The associated research problems investigated for phase change material (PCM) are the low thermal conductivity and low rate of heat transfer from heat transfer fluid to PCM in thermal energy storage system. In this study an intensive study is carried out to find the best material for thermal storage and later on as a high conductive nano-particle graphite is used to enhance the effective thermal conductivity of the mixed materials. As a thermal storage material molten solar Salt (60% NaNO3+40%KNO3) has been selected, after that detailed numerical modeling of the proposed design has been done using MATLAB algorithm and following the fixed grid enthalpy method. The model is based on the numerical computation of 1-D finite difference method using explicit scheme. The second part of the study is based on enhancing the heat transfer performance by introducing the concept of fractal network or branching heat exchanger. Results from the numerical computation have been utilized for the comparison …
Date: August 2013
Creator: Hasib, A. M. M. Golam
System: The UNT Digital Library
Effect of Surface Treatment on the Performance of CARALL, Carbon Fiber Reinforced Aluminum Dissimilar Material Joints (open access)

Effect of Surface Treatment on the Performance of CARALL, Carbon Fiber Reinforced Aluminum Dissimilar Material Joints

Fiber-metal laminates (FML) are the advanced materials that are developed to improve the high performance of lightweight structures that are rapidly becoming a superior substitute for metal structures. The reasons behind their emerging usage are the mechanical properties without a compromise in weight other than the traditional metals. The bond remains a concern. This thesis reviews the effect of pre-treatments, say heat, P2 etch and laser treatments on the substrate which modifies the surface composition/roughness to impact the bond strength. The constituents that make up the FMLs in our present study are the Aluminum 2024 alloy as the substrate and the carbon fiber prepregs are the fibers. These composite samples are manufactured in a compression molding process after each pre-treatment and are then subjected to different tests to investigate its properties in tension, compression, flexural and lap shear strength. The results indicate that heat treatment adversely affects properties of the metal and the joint while laser treatments provide the best bond and joint strength.
Date: August 2017
Creator: Bandi, Raghava
System: The UNT Digital Library