272 Matching Results

Results open in a new window/tab.

(4+2)-Cycloaddition Reactions of Ketenes; Pyranones (open access)

(4+2)-Cycloaddition Reactions of Ketenes; Pyranones

This study deals with the (4+2)-cycloaddition reactions of 4-π electron compounds with ketenes. Chloroketenes were generated in situ from the corresponding chlorinated acid chlorides in the presence of the ketenophiles. Chloro-, dichloro- and diphenylketenes reacted with 1-methoxy-3-trimethylsiloxy-l,3-butadiene, and 2,4-bis(trimethylsiloxy)-1,3-pentadiene to yield the corresponding dihydropyrans. The dihydropyrans yielded substituted 4-pyranones on hydrolysis.
Date: August 1983
Creator: Agho, Michael O. (Michael Osarenogowu)
System: The UNT Digital Library
The Abraham Solvation Model Used for Prediction of Solvent-Solute Interactions and New Methods for Updating Parameters (open access)

The Abraham Solvation Model Used for Prediction of Solvent-Solute Interactions and New Methods for Updating Parameters

The Abraham solvation model (ABSM) is an experimentally derived predictive model used to help predict various solute properties. This work covers various uses for the ABSM including predicting molar enthalpies of vaporization, predicting solvent coefficients for two new solvents (2,2,5,5-tetramethyloxolane and diethyl carbonate), predicting values for multiple new ionic liquids (ILs). This work also introduces a novel method for updating IL ABSM parameters by updating cation- and anion-specific values using linear algebra and binary matrices.
Date: May 2021
Creator: Churchill, Brittani N.
System: The UNT Digital Library
Acenaphthene and 1,10-Phenanthroline-Fused Βeta-Functionalized Porphyrins (open access)

Acenaphthene and 1,10-Phenanthroline-Fused Βeta-Functionalized Porphyrins

A series of acene-fused porphyrins and 1,10-phenanthroline-fused porphyrins were synthesized and characterized via NMR spectroscopy and mass spectrometry. The acene-fused porphyrins exhibit unique optoelectronic properties, most notably they exhibit highly red-shifted absorption bands. The 1,10-phenanthroline-fused porphyrins are of interest for their ability to bond to as variety of metals to form chelation complexes.
Date: December 2023
Creator: Arvidson, Jacob Randall
System: The UNT Digital Library
Activation of Small Molecules by Transition Metal Complexes via Computational Methods (open access)

Activation of Small Molecules by Transition Metal Complexes via Computational Methods

The first study project is based on modeling Earth abundant 3d transition-metal methoxide complexes with potentially redox-noninnocent ligands for methane C–H bond activation to form methanol (LnM-OMe + CH4 → LnM–Me + CH3OH). Three types of complex consisting of tridentate pincer terpyridine-like ligands, and different first-row transition metals (M = Ti, V, Cr, Mn, Fe, Co, Ni, and Cu) were modeled to elucidate the reaction mechanism as well as the effect of the metal identity on the thermodynamics and kinetics of a methane activation reaction. The calculations showed that the d electron count of the metal is a more significant factor than the metal's formal charge in controlling the thermodynamics and kinetics of C–H activation. These researches suggest that late 3d-metal methoxide complexes that favor σ-bond metathesis pathways for methane activation will yield lower barriers for C–H activation, and are more profitable catalyst for future studies. Second, subsequently, on the basis of the first project, density functional theory is used to analyze methane C−H activation by neutral and cationic nickel-methoxide complexes. This study identifies strategies to further lower the barriers for methane C−H activation through evaluation of supporting ligand modifications, solvent polarity, overall charge of complex, metal identity and counterion …
Date: May 2020
Creator: Najafian, Ahmad
System: The UNT Digital Library
Adhesion/Diffusion Barrier Layers for Copper Integration: Carbon-Silicon Polymer Films and Tantalum Substrates (open access)

Adhesion/Diffusion Barrier Layers for Copper Integration: Carbon-Silicon Polymer Films and Tantalum Substrates

The Semiconductor Industry Association (SIA) has identified the integration of copper (Cu) with low-dielectric-constant (low-k) materials as a critical goal for future interconnect architectures. A fundamental understanding of the chemical interaction of Cu with various substrates, including diffusion barriers and adhesion promoters, is essential to achieve this goal. The objective of this research is to develop novel organic polymers as Cu/low-k interfacial layers and to investigate popular barrier candidates, such as clean and modified tantalum (Ta) substrates. Carbon-silicon (C-Si) polymeric films have been formed by electron beam bombardment or ultraviolet (UV) radiation of molecularly adsorbed vinyl silane precursors on metal substrates under ultra-high vacuum (UHV) conditions. Temperature programmed desorption (TPD) studies show that polymerization is via the vinyl groups, while Auger electron spectroscopy (AES) results show that the polymerized films have compositions similar to the precursors. Films derived from vinyltrimethyl silane (VTMS) are adherent and stable on Ta substrates until 1100 K. Diffusion of deposited Cu overlayers is not observed below 800 K, with dewetting occurred only above 400 K. Hexafluorobenzene moieties can also be incorporated into the growing film with good thermal stability. Studies on the Ta substrates demonstrate that even sub-monolayer coverages of oxygen or carbide on polycrystalline …
Date: December 1999
Creator: Chen, Li
System: The UNT Digital Library
Adsorbate-enhanced Corrosion Processes at Iron and Iron Oxide Surfaces (open access)

Adsorbate-enhanced Corrosion Processes at Iron and Iron Oxide Surfaces

This study was intended to provide a fuller understanding of the surface chemical processes which result in the corrosion of ferrous materials.
Date: December 1994
Creator: Murray, Eric
System: The UNT Digital Library
Aldohaloketenes and the Stereochemistry of Aldohaloketene Cycloadditions (open access)

Aldohaloketenes and the Stereochemistry of Aldohaloketene Cycloadditions

The objective of this research problem was to synthesize aldohaloketenes and investigate the chemistry of this new class of ketenes.
Date: May 1970
Creator: Hoff, Edwin Frank
System: The UNT Digital Library
Allowing Students to Have VOICES (Voluntary Options in Chemical Education Schedules) in General Chemistry I (open access)

Allowing Students to Have VOICES (Voluntary Options in Chemical Education Schedules) in General Chemistry I

The purpose of this investigation (a quasi-experimental design called a non-equivalent design group (NEDG)) was to determine if allowing students in a science majors general Chemistry I course the choice in establishing the due dates that their homework was due to the instructor would improve course averages. This study covered two semesters with a total of 288 students participating with n = 158 in the fall and n = 130 in the spring. The students self-selected the homework group, VOICES, that best fit his/her needs which included (1) the instructor's homework schedule, (2) a student-customized schedule or a schedule that followed the exam schedule, or (3) all homework due by the last class day prior to the final exam. Online homework was assigned and graded with individual assignment and homework average grades collected and analyzed. No statistically significant differences were found among the VOICES groups with respect to final course average. Other results of this study replicated findings in the literature; namely, that there is a higher correlation between mathematics skills and course success. Course averages of students who had completed Calculus I or higher were statistically significantly higher than students with less completed mathematics coursework in all VOICES groups. …
Date: December 2018
Creator: Ford, Robyn Lynn
System: The UNT Digital Library
Aminoketene. Cycloaddition of Ketenes and Imines to Yield β- or δ- Lactams (open access)

Aminoketene. Cycloaddition of Ketenes and Imines to Yield β- or δ- Lactams

The purpose of this investigation was to provide a systematic study of the cycloaddition pf (N-alkyl-N-phenylamino)- methoxy-and dichloroketenes to various imines and to investigate the stereochemistry of these cycloadditions.
Date: December 1991
Creator: Dad, Mohammad M. (Mohammad Mehdj)
System: The UNT Digital Library
Analysis of Acid Gas Emissions in the Combustion of the Binder Enhanced d-RDF by Ion Chromatography (open access)

Analysis of Acid Gas Emissions in the Combustion of the Binder Enhanced d-RDF by Ion Chromatography

Waste-to-energy has become an attractive alternative to landfills. One concern in this development is the release of pollutants in the combustion process. The binder enhanced d-RDF pellets satisfy the requirements of environmental acceptance, chemical/biological stability, and being storeable. The acid gas emissions of combusting d-RDF pellets with sulfur-rich coal were analyzed by ion chromatography and decreased when d-RDF pellets were utilized. The results imply the possibility of using d-RDF pellets to substitute for sulfur-rich coal as fuel, and also substantiate the effectiveness of a binder, calcium hydroxide, in decreasing emissions of SOx. In order to perform the analysis of the combustion sample, sampling and sample pretreatment methods prior to the IC analysis and the first derivative detection mode in IC are investigated as well. At least two trapping reagents are necessary for collecting acid gases: one for hydrogen halides, and the other for NOx and SOx. Factors affecting the absorption of acid gases are studied, and the strength of an oxidizing agent is the main factor affecting the collection of NOx and SOx. The absorption preference series of acid gases are determined and the absorption models of acid gases in trapping reagents are derived from the analytical results. To prevent …
Date: August 1988
Creator: Jen, Jen-Fon
System: The UNT Digital Library
The Analysis of Volatile Impurities in Air by Gas Chromatography/Mass Spectrometry (open access)

The Analysis of Volatile Impurities in Air by Gas Chromatography/Mass Spectrometry

The determination of carbon monoxide is also possible by trapping CO on preconditioned molecular sieve and thermal desorption. Analysis in this case is performed by gas chromatography/mass spectroscopy, although the trapping technique is applicable to other suitable GC techniques.
Date: May 1993
Creator: Talasek, Robert Thomas
System: The UNT Digital Library

Application-Focused Investigation of Monovalent Metal Complexes for Nanoparticle Synthesis

Access: Use of this item is restricted to the UNT Community
Over the last 20 years, there has occurred an increase in the number, scope, and impact of nanomaterials projects. By leveraging the Surface Plasmon Resonance of metallic nanoparticles for labelling, sensing, and treatment, researchers have demonstrated the versatile utility of these nanomaterials in medicine. The literature provides evidence of use of simple, well-known chemistry for nanomaterials synthesis when the focus is new applications of nanomaterials. A case in point, is the synthesis of metallic nanoparticles, whereby HAuCl4, CuCl2, Cu(acac)2, and AgNO3 are typically employed as nanoparticle precursors. Unfortunately, the use of these precursors limits the number of applications available to these materials - particularly for AuNPs in medicine, where the byproducts of nanoparticle synthesis (most often surface-adsorbed reductants, toxic stabilizers, and growth directors) cause nanoparticles to fail clinical trials. Despite the several thousand publications detailing the advancements in nanoparticle therapeutics, as of 2017, there were only 50 FDA-approved nanoparticle formulations. Less than 10 were based on metallic nanoparticles. This is a problem because many of these nanoparticle therapeutics demonstrate potent cell killing ability and labeling of cells. A solution to this problem may be the use of weakly coordinated, monovalent metal complexes, which require only one electron to reduce them …
Date: August 2019
Creator: Kamras, Brian Leon
System: The UNT Digital Library
Application of Novel Microporous Polyolefin Silica-Based Substrate in Paper Spray Mass Spectrometry (PS-MS) (open access)

Application of Novel Microporous Polyolefin Silica-Based Substrate in Paper Spray Mass Spectrometry (PS-MS)

This study addressed five key applications of paper spray mass spectrometry (PS-MS): (i) comparative analysis of the microporous substrate with the cellulose-based substrate in drug detection; (ii) detection of more than 190 fentanyl analogs with their fragmentation pattern can be implemented in the future reference for quicker, accurate and sensitive determination; (iii) exploring sweat in a fingerprint to be considered an alternate method to recognize non-invasive markers of metabolites, lipids, narcotics, and explosive residues that can be used in forensic testing applications; (iv) extending and improving better, cost-effective and quick real-time monitoring of the diseased stage using biofluid samples to obtain vastly different lipid information in viral infection such as COVID-19; and (v) mass spectral detection in chemical warfare agent (CWA) stimulant gas exposure with microporous structure absorbency capabilities in air quality monitoring. This novel synthetic material is known as Teslin® (PPG Industries), consisting of a microporous polyolefin single-layered silica matrix, can be used for precise, sensitive, selective, and rapid sample analysis with PS-MS. The Teslin® substrate provided longer activation time for samples and an active signal with a higher concentration of ion formation and mobility compared to cellulose-based papers. Direct analysis of multiple samples showed that, besides being more …
Date: December 2020
Creator: Weligamage De Silva, Imesha
System: The UNT Digital Library
Applications of Metallic Clusters and Nanoparticles via Soft Landing Ion Mobility, from Reduced to Ambient Pressures (open access)

Applications of Metallic Clusters and Nanoparticles via Soft Landing Ion Mobility, from Reduced to Ambient Pressures

Nanoparticles, simple yet groundbreaking objects have led to the discovery of invaluable information due to their physiological, chemical, and physical properties, have become a hot topic in various fields of study including but not limited to chemistry, biology, and physics. In the work presented here, demonstrations of various applications of chemical free nanoparticles are explored, from the determination of a non-invasive method for the study of the exposome via using soft-landing ion mobility (SLIM) deposited nanoparticles as a matrix-assisted laser desorption/ionization (MALDI-MS) matrix replacement, to the direct SLIM-exposure of nanoparticles onto living organisms. While there is plenty of published work in soft-landing at operating pressures of 1 Torr, the work presented here shows how this technology can be operated at the less common ambient pressure. The ease of construction of this instrument allows for various modifications to be performed for a wide array of applications, furthermore the flexibility in metallic sample, operating pressure, and deposition time only open doors to many other future applications. The work presented will also show that our ambient SLIM system is also able to be operated for toxicological studies, as the operation at ambient pressure opens the door to new applications where vacuum conditions are …
Date: August 2018
Creator: Aguilar Ayala, Roberto
System: The UNT Digital Library
Aqueous Solubilities and Water Induced Transformations of Halogenated Benzenes (open access)

Aqueous Solubilities and Water Induced Transformations of Halogenated Benzenes

Methods of determining the aqueous solubilities of twelve chlorinated benzenes were evaluated in pure and in different water matrices. In pure water, results were comparable with the calculated values. Higher chlorinated tetrachlorobenzenes (TeCBs), pentachlorobenzenes (PCBz), and hexachlorobenzenes (HCBs) gave better precision and accuracy than lower chlorinated monochlorobenzenes (MCBs), dichlorobenzenes (DCBs), or trichlorobenzenes (TCBs).
Date: August 1989
Creator: Kim, In-Young
System: The UNT Digital Library
Aromatic Amino Acid Studies (open access)

Aromatic Amino Acid Studies

Pyridine ring analogs of the aromatic amino acids phenylalanine and tyrosine were synthesized and studied in microbiological and mammalian systems.
Date: December 1970
Creator: Sullivan, Patrick Timothy
System: The UNT Digital Library

Aromaticity, Supramolecular Stacks, and Luminescence Properties of Cyclic Trinuclear Complexes

The dissertation covers three major topics: metal-assisted aromaticity, synthetic approaches to tailor donor-acceptor supramolecular stacks, and photoluminescence properties of cyclic trinuclear complexes (CTCs) of d10 metals. First, multiple theoretical approaches are adapted to discuss in detail the origin of aromaticity of CTCs, putting forward a metal-assisted aromaticity model. Next are the discoveries of donor-acceptor stacked CTC–CTC' complexes from both experimental and computational perspectives, reporting multiple novel crystallography-determined structures and revealing their pertinent intermolecular ground-state charge transfer. The spontaneous binding behavior is also determined by UV-vis and NMR titrations and rationalized as the cooperation of multiple supramolecular interactions, including metallophilicity, electrostatic attraction, and dispersion. The last part includes systematic investigations of photoluminescence properties of halogen-metal-bonded CTCs and sandwich-like cation–π-bonded heptanuclear clusters based on CTCs. The cooperative effects of metal-centered conformation, the heavy-atom and relativistic effects from both the halogen and metal atoms play complementary roles in the phosphorescence process to promote the inter-system crossing and radiative transitions.
Date: December 2022
Creator: Lu, Zhou
System: The UNT Digital Library
Atomic Layer Deposition of Boron Oxide and Boron Nitride for Ultrashallow Doping and Capping Applications (open access)

Atomic Layer Deposition of Boron Oxide and Boron Nitride for Ultrashallow Doping and Capping Applications

The deposition of boron oxide (B₂O₃) films on silicon substrates is of significant interest in microelectronics for ultrashallow doping applications. However, thickness control and conformality of such films has been an issue in high aspect ratio 3D structures which have long replaced traditional planar transistor architectures. B₂O₃ films are also unstable in atmosphere, requiring a suitable capping barrier for passivation. The growth of continuous, stoichiometric B₂O₃ and boron nitride (BN) films has been demonstrated in this dissertation using Atomic Layer Deposition (ALD) and enhanced ALD methods for doping and capping applications. Low temperature ALD of B₂O₃ was achieved using BCl₃/H₂O precursors at 300 K. In situ x-ray photoelectron spectroscopy (XPS) was used to assess the purity and stoichiometry of deposited films with a high reported growth rate of ~2.5 Å/cycle. Free-radical assisted ALD of B₂O₃ was also demonstrated using non-corrosive trimethyl borate (TMB) precursor, in conjunction with mixed O₂/O-radical effluent, at 300 K. The influence of O₂/O flux on TMB-saturated Si surface was investigated using in situ XPS, residual gas analysis mass spectrometer (RGA-MS) and ab initio molecular dynamics simulations (AIMD). Both low and high flux regimes were studied in order to understand the trade-off between ligand removal and B₂O₃ …
Date: December 2020
Creator: Pilli, Aparna
System: The UNT Digital Library
Atomic Layer Deposition of H-BN(0001) on Transition Metal Substrates, and In Situ XPS Study of Carbonate Removal from Lithium Garnet Surfaces (open access)

Atomic Layer Deposition of H-BN(0001) on Transition Metal Substrates, and In Situ XPS Study of Carbonate Removal from Lithium Garnet Surfaces

The direct epitaxial growth of multilayer BN by atomic layer deposition is of critical significance forfo two-dimensional device applications. X-ray photoelectron spectroscopy (XPS) and low energy electron diffraction (LEED) demonstrate layer-by-layer BN epitaxy on two different substrates. One substrate was a monolayer of RuO2(110) formed on a Ru(0001) substrate, the other was an atomically clean Ni(111) single crystal. Growth was accomplished atomic layer deposition (ALD) cycles of BCl3/NH3 at 600 K substrate temperature and subsequent annealing in ultrahigh vacuum (UHV). This yielded stoichiometric BN layers, and an average BN film thickness linearly proportional to the number of BCl3/NH3 cycles. The BN(0001)/RuO2(110) interface had negligible charge transfer or band bending as indicated by XPS and LEED data indicate a 30° rotation between the coincident BN and oxide lattices. The atomic layer epitaxy of BN on an oxide surface suggests new routes to the direct growth and integration of graphene and BN with industrially important substrates, including Si(100). XPS and LEED indicated epitaxial deposition of h-BN(0001) on the Ni(111) single crystal by ALD, and subsequent epitaxially aligned graphene was deposited by chemical vapor deposition (CVD) of ethylene at 1000 K. Direct multilayer, in situ growth of h-BN on magnetic substrates such as …
Date: May 2020
Creator: Jones, Jessica C.
System: The UNT Digital Library

Bifunctional Enamine‐Metal Lewis Acid Catalysis and α-Enaminones for Cyclization Reactions

The use of enamines continues to be an important tool in organic syntheses as both a catalyst and reactant. The addition of metal catalysts coupled with enamine catalysis has generated many reactions that normally would not occur separately. However, catalysts' incompatibility is an issue that we wish to solve allowing new chemistry to occur without hindrance. The use of enamines has continued to be a well-studied area of organic chemistry, but the field is ripe for different types of enamines to gain the spotlight. Enaminones are enamines with both nucleophilic and electrophilic properties. They allow reactions that are normally not possible with enamines to become obtainable. Chapter 1 is a brief introduction on enamines and the reason they gained so much attention. Then ends with enaminones and what makes them interesting reactants. Chapter 2 described a new synthesis for the tricyclic synthesis of chromanes using a novel bifunctional catalyst system of enamine-metal Lewis acid giving great yields (up to 87 %yield) and excellent stereoselectivity (up to 99 % ee). Chapter 3 covered new reactions for ring-open cyclopropane (up to 94% yield), tetrahydroquinolinones (up to 84% yield) and enantiospecific tetrahydroquinolinones (up to 84% yield and 97% ee) using α-enaminone and donor-acceptor …
Date: August 2022
Creator: Davis, Jacqkis
System: The UNT Digital Library
Biological Inhibitors (open access)

Biological Inhibitors

Four isosteric series of plant growth-regulating compounds were prepared. Using an Avena sativa coleptile assay system, derivatives in series I and IV inhibited segment elongation to a greater degree than did comparable derivatives in series II and III.
Date: December 1971
Creator: Sargent, Dale Roger
System: The UNT Digital Library
Bonding Studies in Group IV Substituted n,n-dimethylanilines (open access)

Bonding Studies in Group IV Substituted n,n-dimethylanilines

The purpose of the present work is to study the effects of the trimethylsilyl and trimethylgermyl substituents on the N,N-dimethylamino ring system. Both ground and excited state interactions were studied and their magnitudes determined. The experimental data were then used in conjunction with molecular orbital calculations to differentiate among, and determine the importance of, d-p bonding, hyperconjugation or polarization of the trimethylsilyl group on the ground and excited state bonding.
Date: December 1971
Creator: Drews, Michael James
System: The UNT Digital Library
Calcium Aluminates Synthesis, Characterization, and Hydration Behavior (open access)

Calcium Aluminates Synthesis, Characterization, and Hydration Behavior

The hydration behavior of the calcium aluminates as a function of the glass content, the curing temperature, and the water-solid ratio was investigated. In order to keep them from influencing the results, the free-lime content and the surface area of all samples were kept constant, whenever possible. Samples were hydrated with a water-solid ratio of 10/1 for periods of 1 to 90 days. Three curing temperatures were studied; 2°C, 25°C, and 50°C. Samples were hydrated in tightly sealed polyethylene containers to prevent reactions with atmospheric carbon dioxide. The hydration was followed by X-ray diffraction and thermal analysis. Only two samples, Hexacalcium Tetra-alumino Magnesium Silicate and Tricalcium Magnesium Dialuminate, were successfully prepared in an amorphous form. These compounds were used to investigate the effect of glass content on the hydration behavior. Results indicate that when the glass content is increased a corresponding increase is found in the percent combined water. Samples hydrated at 25°C were influenced by changes in the glass content to a greater degree than were those hydrated at either 2°C or 50°C. The effect of the water-solid ratio on the hydration behavior of the calcium aluminates was studied using the compounds; Hexacalcium Tetra-Alumino Magnesium Silicate/ and Dodecacalcium Hepta-Aluminate. …
Date: December 1984
Creator: Griffin, Joseph George
System: The UNT Digital Library
Catalytic Calcination of Calcium Carbonate (open access)

Catalytic Calcination of Calcium Carbonate

The calcination of calcium carbonate in a cement or a lime kiln uses approximately two to four times the theoretical quantity of energy predicted from thermodynamic calculation depending upon the type of the kiln used (1.4 x 10^6 Btu/ton theoretical to 6 x 10^6 Btu/ton actual). The objective of this research was to attempt to reduce the energy required for the calcination by 1. decreasing the calcination temperature of calcium carbonate, and/or 2. increasing the rate of calcination at a specific temperature. Assuming a catalytic enhancement of 20 percent in the industrial applications, an energy savings of 300 million dollars annually in the United States could be reached in the cement and lime industries. Three classes of compounds to date have shown a positive catalytic effect on the calcination of calcium carbonate. These include alkali halides, phospho- and silico-molybdate complexes, and the fused carbonates system.
Date: August 1985
Creator: Safa, Ali Ibrahim, 1953-
System: The UNT Digital Library