50 Matching Results

Results open in a new window/tab.

N-Acylethanolamines and Plant Phospholipase D (open access)

N-Acylethanolamines and Plant Phospholipase D

Recently, three distinct isoforms of phospholipase D (PLD) were identified in Arabidopsis thaliana. PLD α represents the well-known form found in plants, while PLD β and γ have been only recently discovered (Pappan et al., 1997b; Qin et al., 1997). These isoforms differ in substrate selectivity and cofactors required for activity. Here, I report that PLD β and γ isoforms were active toward N-acylphosphatidylethanolamine (NAPE), but PLD α was not. The ability of PLD β and γ to hydrolyze NAPE marks a key difference from PLD α. N-acylethanolamines (NAE), the hydrolytic products of NAPE by PLD β and γ, inhibited PLD α from castor bean and cabbage. Inhibition of PLD α by NAE was dose-dependent and inversely proportional to acyl chain length and degree of unsaturation. Enzyme kinetic analysis suggested non-competitive inhibition of PLD α by NAE 14:0. In addition, a 1.2-kb tobacco (Nicotiana tabacum L.) cDNA fragment was isolated that possessed a 74% amino acid identity to Arabidopsis PLD β indicating that this isoform is expressed in tobacco cells. Collectively, these results provide evidence for NAE producing PLD activities and suggest a possible regulatory role for NAE with respect to PLD α.
Date: December 1998
Creator: Brown, Shea Austin
System: The UNT Digital Library
Stretching the Flexible Myosin II Subfragment Using the Novel Gravitational Force Spectroscope, and the Uncoiling of S2 (open access)

Stretching the Flexible Myosin II Subfragment Using the Novel Gravitational Force Spectroscope, and the Uncoiling of S2

Familial Hypertrophic cardiomyopathy (HCM) causes ventricle walls to thicken and often leads to sudden death especially in adults. Mutations in the subfragment 2 (S2) of β-cardiac myosin are implicated in the genetic disorder. This S2 region is a coiled-coil rod region resulting from the dimeric form of myosin II. It has been proposed that an elastic quality allows normal S2 to absorb force during the powerstroke according to the sliding filament model. To test the flexibility of single molecules of S2 against levels of physiological force, the Gravitational Force Spectrometer (GFS) is being developed. This novel system employs a standard microscope on an equatorial mount that allows the spectrometer to be rotated freely in space. Stationary glass beads are attached to a microscope slide where the molecule is tethered between the stationary bead and a smaller mobile bead. The GFS is oriented so that the force of gravity can act on the mobile bead and so impart a small force to the tethered subfragment. Additionally, a video system in conjunction with ImageJ software makes a distance measurement of the molecule possible with a resolution of around 11 nm. The S2 can be stretched parallel or perpendicular to the coiled coil …
Date: May 2010
Creator: Dunn, James W.
System: The UNT Digital Library
Interactions of N-Acylethanolamine Metabolism and Abscisic Acid Signaling in Arabidopsis Thaliana Seedlings (open access)

Interactions of N-Acylethanolamine Metabolism and Abscisic Acid Signaling in Arabidopsis Thaliana Seedlings

N-Acylethanolamines (NAEs) are endogenous plant lipids hydrolyzed by fatty acid amide hydrolase (FAAH). When wildtype Arabidopsis thaliana seeds were germinated and grown in exogenous NAE 12:0 (35 µM and above), growth was severely reduced in a concentration dependent manner. Wildtype A. thaliana seeds sown on exogenous abscisic acid (ABA) exhibited similar growth reduction to that seen with NAE treatment. AtFAAH knockouts grew and developed similarly to WT, but AtFAAH overexpressor lines show markedly enhanced sensitivity to ABA. When low levels of NAE and ABA, which have very little effect on growth alone, were combined, there was a dramatic reduction in seedling growth in all three genotypes, indicating a synergistic interaction between ABA and NAE. Notably, this synergistic arrest of seedling growth was partially reversed in the ABA insensitive (abi) mutant abi3-1, indicating that a functional ABA signaling pathway is required for the full synergistic effect. This synergistic growth arrest results in an increased accumulation of NAEs, but no concomitant increase in ABA levels. The combined NAE and ABA treatment induced a dose-dependent increase in ABI3 transcript levels, which was inversely related to growth. The ABA responsive genes AtHVA22B and RD29B also had increased expression in both NAE and ABA treatment. …
Date: August 2010
Creator: Cotter, Matthew Q.
System: The UNT Digital Library
Metabolic Engineering of Raffinose-Family Oligosaccharides in the Phloem Reveals Alterations in Patterns of Carbon Partitioning and Enhances Resistance to Green Peach Aphid (open access)

Metabolic Engineering of Raffinose-Family Oligosaccharides in the Phloem Reveals Alterations in Patterns of Carbon Partitioning and Enhances Resistance to Green Peach Aphid

Phloem transport is along hydrostatic pressure gradients generated by differences in solute concentration between source and sink tissues. Numerous species accumulate raffinose-family oligosaccharides (RFOs) in the phloem of mature leaves to accentuate the pressure gradient between source and sinks. In this study, metabolic engineering was used to generate RFOs at the inception of the translocation stream of Arabidopsis thaliana, which transports predominantly sucrose. To do this, three genes, GALACTINOL SYNTHASE, RAFFINOSE SYNTHASE and STACHYOSE SYNTHASE, were expressed from promoters specific to the companion cells of minor veins. Two transgenic lines homozygous for all three genes (GRS63 and GRS47) were selected for further analysis. Sugars were extracted and quantified by high performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD), and 21-day old plants of both lines had levels of galactinol, raffinose, and stachyose approaching 50% of total soluble sugar. All three exotic sugars were also identified in phloem exudates from excised leaves of transgenic plants whereas levels were negligible in exudates from wild type leaves. Differences in starch accumulation or degradation between wild type and GRS63 and GRS47 lines were not observed. Similarly, there were no differences in vegetative growth between wild type and engineered plants, but engineered plants flowered …
Date: August 2010
Creator: Cao, Te
System: The UNT Digital Library
Hindrance of the Myosin Power Stroke Posed by the Proximity to the Troponin Complex Identified Using a Novel LRET Fluorescent Nanocircuit (open access)

Hindrance of the Myosin Power Stroke Posed by the Proximity to the Troponin Complex Identified Using a Novel LRET Fluorescent Nanocircuit

A novel luminescence resonance energy transfer (LRET) nanocircuit assay involving a donor and two acceptors in tandem was developed to study the dynamic interaction of skeletal muscle contraction proteins. The donor transmits energy relayed to the acceptors distinguishing myosin subfragment-1 (S1) lever arm orientations. The last acceptor allows the detection of S1's bound near or in between troponin complexes on the thin filament. Additionally, calcium related changes between troponin T and myosin were detected. Based on this data, the troponin complex situated every 7 actin monomers, hinders adjacently bound myosins to complete their power stroke; whereas myosins bound in between troponin complexes undergo complete power strokes.
Date: May 2007
Creator: Coffee Castro-Zena, Pilar G.
System: The UNT Digital Library
Mechanism of Activation by Autophosphorylation of an S6/H4 Kinase Isolated From Human Placenta (open access)

Mechanism of Activation by Autophosphorylation of an S6/H4 Kinase Isolated From Human Placenta

A novel molecular mechanism of autophosphorylation-dependent activation of the ser/thr S6/H4 kinase isolated from human placenta is described. Phosphopeptide mapping of the enzyme was used to determine the rate and extent of site-specific autophosphorylation. These data were correlated to phosphotransferase activity of the protein kinase. The results indicated that a sequential phosphorylation of two sites in the catalytic domain is required for maximum activation. Kinetic analysis determined that site 1 is modified by an intramolecular phosphorylation, and site 2 is modified by an intermolecular phosphorylation. On the basis of these data a model is proposed in which autophosphorylation of the pseudosubstrate domain and on a serine residue in subdomain VIII are both required for maximum activation of the S6/H4 kinase.
Date: December 1994
Creator: Benner, Gretchen E. (Gretchen Evonne)
System: The UNT Digital Library
Tobacco Phospholipase D β1: Molecular Cloning and Biochemical Characterization (open access)

Tobacco Phospholipase D β1: Molecular Cloning and Biochemical Characterization

Transgenic tobacco plants were developed containing a partial PLD clone in antisense orientation. The PLD isoform targeted by the insertion was identified. A PLD clone was isolated from a cDNA library using the partial PLD as a probe: Nt10B1 shares 92% identity with PLDβ1 from tomato but lacks the C2 domain. PCR analysis confirmed insertion of the antisense fragment into the plants: three introns distinguished the endogenous gene from the transgene. PLD activity was assayed in leaf homogenates in PLDβ/g conditions. When phosphatidylcholine was utilized as a substrate, no significant difference in transphosphatidylation activity was observed. However, there was a reduction in NAPE hydrolysis in extracts of two transgenic plants. In one of these, a reduction in elicitor- induced PAL expression was also observed.
Date: December 2002
Creator: Hodson, Jane E.
System: The UNT Digital Library
Sensitive Microtiter Assays for NAD, NADP and Protein Quantification in Human Lymphocytes (open access)

Sensitive Microtiter Assays for NAD, NADP and Protein Quantification in Human Lymphocytes

Intracellular levels of NAD are of renewed interest in clinical and basic science research due to the new discovery of enzymes which utilize NAD as a substrate. Microtiter assays for the determination of NAD, NADP and protein were developed as modifications of previously published methods. The resulting assays are simple, cost effective and sensitive. An improved method of isolating lymphocytes was also developed. The resultant procedure requires one hour and removes greater than 99.9% of the platelets. Lymphocyte pools were stabilized with the addition of ADP-ribosyltransferase inhibitors and a modified extraction procedure. These studies have led to the development of a method for evaluation of NAD in human lymphocytes that is sensitive, selective and suitable for automation.
Date: May 1990
Creator: Johnson, James, 1964-
System: The UNT Digital Library
Studies of the Interaction of LCAT with Lipoprotein Substrates in HDL Deficient Plasma Systems (open access)

Studies of the Interaction of LCAT with Lipoprotein Substrates in HDL Deficient Plasma Systems

Enzymatic and lipid transfer reactions involved in reverse cholesterol transport were studied in HDL deficient plasma systems. Fasting plasma samples were obtained from control and cholesterol fed guinea pigs as well as from a fish eye disease patient and were used to localize the enzyme LCAT among plasma lipoproteins (VLDL, LDL, and HDL). In both guinea pig and fish eye disease patient plasma, the LCAT activity was found in association with the HDL type particles. Cholesterol feeding in guinea pigs altered the properties of lipoprotein substrates for LCAT resulting in some changes, specifically: 1) decreased fractional rate of plasma cholesterol esterification and, 2) lower transfer of free cholesterol (FC) and esterified cholesterol (CE) within the lipoprotein fractions.
Date: August 1989
Creator: Paranjape, Sulabha
System: The UNT Digital Library
Studies on ADP-Ribose Polymer Metabolism in Cultured Mammalian Cells Following DNA Damage (open access)

Studies on ADP-Ribose Polymer Metabolism in Cultured Mammalian Cells Following DNA Damage

ADP-ribose polymer metabolism has been studied in human cells derived from a patient with Glutamyl Ribose Phosphate Storage Disease (GRPSD) and in mouse C3H1OT1/2 cells following oxidative stress induced by hydrogen peroxide (H202 ). It has been postulated that GRPSD resulted from an abnormality in ADP-ribose polymer metabolism. This study has shown that these cells exhibit reduced poly(ADP ribose) polymerase activity which is proposed to result from modification of the enzyme with ribose phosphate groups. The modification in the polymerase is proposed to be secondary to a defect in either ADP-ribosyl proteinlyase or an overproduction of a cellular phosphodiesterase. The metabolism of ADP-ribose polymers was rapidly altered by H202 and there were independent effects on adenine nucleotide pools. The results suggest that ADP-ribose polymer metabolism is involved in cellular defenses to oxidative stress.
Date: May 1991
Creator: Maharaj, Geeta
System: The UNT Digital Library
Protein Kinase C Activation in Hyperglycemic Bovine Lens Epithelial Cells (open access)

Protein Kinase C Activation in Hyperglycemic Bovine Lens Epithelial Cells

This study demonstrates the presence of protein kinase C activity in both cytosolic and membrane fractions of bovine lens epithelial cells in culture. Protein kinase C activity is similar in normal and hyperglycemic cells. Furthermore, the ability of the enzyme to translocate from the cytosol to the membrane following phorbol ester treatment is unimpeded by hyperglycemic conditions. Moreover, protein kinase C activation had no effect on myoinositol uptake either in normal cells or in cells exposed to hyperglycemic conditions.
Date: December 1993
Creator: Fan, Wen-Lin
System: The UNT Digital Library
Chemical Mechanism of the Catalytic Subunit of Camp-Dependent Protein Kinase: Methods for Determining the Primary ¹⁸O Isotope Effects Using the Remote Label Technique (open access)

Chemical Mechanism of the Catalytic Subunit of Camp-Dependent Protein Kinase: Methods for Determining the Primary ¹⁸O Isotope Effects Using the Remote Label Technique

A description of the nature of the transition state structure for phosphoryl transfer in the cAPK reaction requires a measurement of the primary 180 isotope effect at the serine hydroxyl acceptor. Since it is difficult to obtain primary 180 isotope effect directly, the 15N/1 4N ratio of the a-amine of the C-terminal glycine in the peptide Leu Arg-Lys-Ala-Ser-Leu-Gly (when serine is phosphorylated) was used to represent on the phosphorylation at serine. 15N Glycine, ' 4N-Glycine and 180 serine were synthesized and used to synthesize two peptides, one containing 1 80-serine/' 5 N glycine and second 1 60-serine/1 4N-glycine. Methods were developed for hydrolyzing the peptides and quantitatively isolating glycine. Partitioning results suggest that catalytic rate was slow compare to substrate dissociation. The 180 primary isotope effect will be determined in the near future using the method developed herein.
Date: December 1991
Creator: Chen, Gang, 1963-
System: The UNT Digital Library
Physical Mapping of Human Transfer RNA Gene Clusters (open access)

Physical Mapping of Human Transfer RNA Gene Clusters

Two plaque-pure phage lambda clones designated as λhtX-l and λhtX-2 that hybridized to unfractionated bovine liver tRNA were isolated from a human X chromosome-specific library. The λDNAs were characterized by restriction mapping and Southern blot hybridization techniques. The human DNA segment in λhtX-l contains five or more presumptive tRNA genes and at least one Alu family member. The 19-kilobase human DNA insert in λhtX-2 contains two or more presumptive tRNA genes and at least three Alu family members. Another human genomic clone designated λhVKV7 hybridized to mammalian valine tRNA IAC. The clone was characterized by physical mapping and Southern blot hybridization techniques. The 18.5-kilobase human DNA fragment in λhVKV7 contains a cluster of three tRNA genes and at least nine Alu family members.
Date: December 1989
Creator: Wang, Luping
System: The UNT Digital Library
In Vitro Modulation of Rat Liver Glyoxalase II Activity (open access)

In Vitro Modulation of Rat Liver Glyoxalase II Activity

Glyoxylase II (Glo II, E.C. 3.1.2.6) catalyzes the hydrolysis of S-D-Lactoylglutathione (SLG) to D-Lactate and glutathione. This is the rate limiting step in the conversion of methylglyoxal to D-Lactate. The purpose of the present study was to determine whether or not a relationship exists between some naturally occuring metabolites and in vivo modulation of Glo II. We have observed a non-competitive inhibition (~ 45%) of Glo II in crude preparation of rat liver by GTP (0.3 mM). A factor (apparently protein),devoid of Glo II,when reconstituted with the purified Glo II, enhanced Glo II activity. This coordinate activation and inhibition of Glo II suggest a mechanism whereby SLG levels can be modulated in vivo.
Date: August 1988
Creator: Mbamalu, Godwin E.
System: The UNT Digital Library
The Regulation of HMG-CoA Reductase by Enzyme-Lipid Interactions (open access)

The Regulation of HMG-CoA Reductase by Enzyme-Lipid Interactions

The temperature-dependent catalytic activity of rat liver 3-hydroxy-3 -methylglutaryl coenzyme A reductase (HMG-CoA reductase) displays the nonlinear Arrhenius behavior characteristic of many membrane-bound enzymes. A two-conformer equilibrium model has been developed to characterize this behavior. In the model, HMG-CoA reductase undergoes a conformational change from a low specific activity to a high specific activity form. This conformation change is apparently driven by a temperature-dependent phase transition of the membrane lipids. It has been found that this model accurately describes the data from diets including rat chow, low-fat, high-carbohydrate, and diets supplemented with fat, cholesterol or cholestyramine. The effects characterized by the model are consistent with the regulation of HMG-CoA reductase by enzyme-lipid interactions.
Date: May 1981
Creator: Smith, Vana L.
System: The UNT Digital Library
Studies on the Biological Activity of N-nitrosamines (open access)

Studies on the Biological Activity of N-nitrosamines

Two aspects of the biological activity of N-nitrosamines were studied. First, the effect of ascorbate on the mutagenicity of N-nitrosopiperidines was studied in the Ames Salmanella/ mammalian microsome mutagenicity test. The addition of ascorbate significantly enhanced the mutagenicity of these compounds. This enhancement was selective for N-nitrosamines suggesting a possible role of ascorbate in N-nitrosamine induced carcinogenicity. Second, the technique of velocity sedimentation in alkaline sucrose density gradients was applied to the detection of N-nitrosamine induced DNA damage in Balb/c 3T3 cells. This technique detected N-nitrosamine induced DNA damage when the cells were made permeable before treatment. This technique compares favorably with other test systems used to evaluate N-nitrosamines and should be useful in further studies of N-nitrosamines.
Date: August 1980
Creator: Barton, Rodney A. (Rodney Alan)
System: The UNT Digital Library
The Nucleotide Sequences of a Mammalian Tyrosine Transfer RNA and a Cluster of Human Transfer RNA Genes (open access)

The Nucleotide Sequences of a Mammalian Tyrosine Transfer RNA and a Cluster of Human Transfer RNA Genes

Tyrosine tRNA was isolated from bovine liver and its nucleotide sequence was determined using in vitro 32p_ labeling techniques. Several important structural features of the tRNA are: the presence of gal-Q in the first position of the anticodon, acp3U at position 20, and a pair of adjacent N,N-dimethylguanosines (residues 26 and 27). A human DNA fragment harbored in a lambda phage clone was isolated, and restriction enzyme analysis revealed the presence of three tRNA genes in a 6.0-kb BamHI subfragment. Portions of the 6.0-kb DNA fragment containing the tRNA genes were sequenced by the method of Maxam and Gilbert and analyzed for transcriptional activity in vitro using homologous cytoplasmic extracts. A threonine tRNAUGU gene exhibited high transcriptional activity dependent on its 5'- flanking sequence. The enhanced transcription is not completely inhibited by alpha-amanitin. The value of studying tRNA structure in concert with the cognate tRNA. genes is discussed.
Date: August 1986
Creator: Johnson, Gary D. (Gary Dean), 1960-
System: The UNT Digital Library
Structural Analyses of a Human Valine Transfer RNA Gene and of a Transfer RNA Pseudogene Cluster (open access)

Structural Analyses of a Human Valine Transfer RNA Gene and of a Transfer RNA Pseudogene Cluster

Two different cloned human DNA segments encompassing transfer RNA gene and pseudogene clusters have been isolated from a human gene library harbored in bacteriophage lambda Charon 4-A. One clone (designated as λhVal7) encompassing a 20.5-kilobase (Kb) human DNA insert was found to contain a valine transfer RNA_AAC gene and several Alu-like elements by Southern blot hybridization analysis and DNA sequencing with the dideoxyribonucleotide chain-termination method in the bacteriophage M13mp19 vector. Another lambda clone (designated as λhLeu8) encompassing a 14.3-Kb segment of human DNA was found to contain a methionine elongator transfer RNA_CAT pseudogene and other as yet unidentified transfer RNA pseudogenes.
Date: December 1987
Creator: Lee, Mike Ming-Jen
System: The UNT Digital Library
Synthesis and Kinetic Mechanism Study of Phosphonopeptide as a Dead-End Inhibitor of cAMP-Dependent Protein Kinase (open access)

Synthesis and Kinetic Mechanism Study of Phosphonopeptide as a Dead-End Inhibitor of cAMP-Dependent Protein Kinase

DL-2-Amino-4-phosphonobutyric acid, an isostere of phosphoserine, was incorporated into the heptapeptide sequence, Leu-Arg-Arg-Ala-(DL-2-amino-4-phosphonobutyric acid)-Leu-Gly, for kinetic mechanistic studies of the cAMP-dependent protein kinase. To block the phosphono hydroxyl groups, methyl, ethyl and 4nitrobenzyl esters were studied as possible protecting groups. The phosphono diethyl ester of the N-Fmoc-protected amino acid was utilized in the synthesis of the heptapeptide. Two configurational forms of the protected peptide were obtained and were separated by C18-reverse phase HPLC. Characterization of the two isomeric forms was accomplished by 3 1P NMR, 1H NMR, 13C% NMR and amino acid analysis. The protecting groups of the isomeric phsophonopeptides were removed by HBr/AcOH and purified by cation exchange HPLC. Both phosphonopeptides were found to be inhibitors of the cAMP-dependent protein kinase, having Ki values of 0.6 mM (peptide A) and 1.9 mM (peptide B).
Date: December 1991
Creator: Yang, Chunhua
System: The UNT Digital Library
Homologous Recombination in Q-Beta Rna Bacteriophage (open access)

Homologous Recombination in Q-Beta Rna Bacteriophage

Q-Beta phage RNAs with inactivating insertion (8 base) or deletion (17 base) mutations within their replicase genes were transfected into Escherichia coli spheroplasts containing QB replicase provided in trans by a resident plasmid. Replicase-defective (Rep~) Q3 phage produced by these spheroplasts were unable to form plaques on cells lacking this plasmid. When individual Rep~ phage were isolated and grown to high titer in cells containing plasmid derived Q3 replicase, revertant Q3 phage (Rep'), with the original mutation (insertion or deletion) repaired, were obtained at a frequency of ca. 1 x 108. RNA recombination via a "template switching" mechanism involving Q3 replicase, the mutant phage genome, and the plasmid-derived replicase mRNA was shown to be the primary means by which these mutant phages reverted to wild type.
Date: May 1992
Creator: Palasingam, Kampan
System: The UNT Digital Library
Pre-Steady State Kinetics of the NAD-Malic Enzyme from Ascaris suum in the Direction of Oxidative Decarboxylation of L-Malate (open access)

Pre-Steady State Kinetics of the NAD-Malic Enzyme from Ascaris suum in the Direction of Oxidative Decarboxylation of L-Malate

Stopped-flow experiments in which the NAD-malic enzyme was preincubated with different reactants at near saturating substrate concentrations suggest a slow isomerization of the E:NAD:Mg complex. The lag is eliminated by preincubation with Mg˙² and malate suggesting that the formation of E:Mg:Malate either bypasses or speeds up the slow isomerization step. Circular dichroic spectral studies of the secondary structural changes of the native enzyme in the presence and absence of substrates supports the existence of conformational changes with NAD˙ and malate. Thus, a slow conformational change of the E:NAD:Mg complex is likely one of the rate-limiting steps in the pre-steady state.
Date: December 1991
Creator: Rajapaksa, Ranjani, 1949-
System: The UNT Digital Library
N-Acylethanolamine (NAE) Profiles Change During Arabidopsis Thaliana Seed Germination and Seedling Growth (open access)

N-Acylethanolamine (NAE) Profiles Change During Arabidopsis Thaliana Seed Germination and Seedling Growth

An understanding of the potential roles as lipid mediators of a family of bioactive metabolites called N-acylethanolamines (NAEs) depends on their accurate identification and quantification. The levels of 18C unsaturated NAEs (e.g. NAE18:2, NAE 18:3, etc.) in wild-type seeds (about 2000 ng/g fw) generally decreased by about 80% during germination and post-germinative growth. In addition, results suggest NAE-degradative fatty acid amide hydrolase (FAAH) expression does not play a major role in normal NAE metabolism as previously thought. Seedlings germinated and grown in the presence of abscisic acid (ABA), an endogenous plant hormone, exhibited growth arrest and secondary dormancy, similar to the treatment of seedlings with exogenous N­lauroylethanolamine (NAE12:0). ABA-mediated growth arrest was associated with higher levels of unsaturated NAEs. Overall, these results are consistent with the concept that NAE metabolism is activated during seed germination and suggest that the reduction in unsaturated NAE levels is under strict temporal control and may be a requirement for normal seed germination and post-germinative growth.
Date: August 2006
Creator: Wiant, William C.
System: The UNT Digital Library
Identification and quantification of lipid metabolites in cotton fibers: Reconciliation with metabolic pathway predictions from DNA databases. (open access)

Identification and quantification of lipid metabolites in cotton fibers: Reconciliation with metabolic pathway predictions from DNA databases.

The lipid composition of cotton (Gossypium hirsutum, L) fibers was determined. Fatty acid profiles revealed that linolenate and palmitate were the most abundant fatty acids present in fiber cells. Phosphatidylcholine was the predominant lipid class in fiber cells, while phosphatidylethanolamine, phosphatidylinositol and digalactosyldiacylglycerol were also prevalent. An unusually high amount of phosphatidic acid was observed in frozen cotton fibers. Phospholipase D activity assays revealed that this enzyme readily hydrolyzed radioactive phosphatidylcholine into phosphatidic acid. A profile of expressed sequence tags (ESTs) for genes involved in lipid metabolism in cotton fibers was also obtained. This EST profile along with our lipid metabolite data was used to predict lipid metabolic pathways in cotton fiber cells.
Date: May 2004
Creator: Wanjie, Sylvia W.
System: The UNT Digital Library
Use of luminescence energy transfer probes to detect genetic variants. (open access)

Use of luminescence energy transfer probes to detect genetic variants.

The purpose of this research was to study the hybridization of molecular beacons under different conditions and designs. Data collected suggest that the inconsistency found in the emission intensity of several of these probes may be caused by 3 important factors: length of the probe, nucleotide sequence and, the formation of an alternative complex structure such as a dimer. Of all three factors, dimer formation is the most troublesome, since it reduces the emission of the reporter molecules. A new probe design was used to reduce dimer formation. The emission signal of the improved probe was several folds stronger than those probes with the early design. In this research, dimer formation is detected, furthermore a new probe with a different design was tested. If dimer formation can be reduced molecular beacons can be integrated into more complex hybridization systems providing an important tool in research and diagnosis of genetic disorders.
Date: August 2004
Creator: Vaccaro, Carlos
System: The UNT Digital Library