53 Matching Results

Results open in a new window/tab.

Analysis of Trace Amounts of Adulterants Found in Powders/Supplements Utilizing Direct Inject, Nanomanipulation, and Mass Spectrometry (open access)

Analysis of Trace Amounts of Adulterants Found in Powders/Supplements Utilizing Direct Inject, Nanomanipulation, and Mass Spectrometry

The regulations of many food products in the United States have been made and followed very well but unfortunately some products are not put under such rigorous standards as others. This leads to products being sold, that are thought to be healthy, but in reality contain unknown ingredients that may be hazardous to the consumers. With the use of several instrumentations and techniques the detection, characterization and identification of these unknown contaminates can be determined. Both the AZ-100 and the TE2000 inverted microscope were used for visual characterizations, image collection and to help guide the extraction. Direct analyte-probed nanoextraction (DAPNe) technique and nanospray ionization mass spectrometry (NSI-MS) was the technique used for examination and identification of all adulterants. A Raman imaging technique was than introduced and has proven to be a rapid, non-destructive and distinctive way to localize a specific adulterant. By compiling these techniques then applying them to the FDA supplied test samples three major adulterants were detected and identified.
Date: August 2016
Creator: Nnaji, Chinyere
System: The UNT Digital Library
Boron Nitride by Atomic Layer Deposition: A Template for Graphene Growth (open access)

Boron Nitride by Atomic Layer Deposition: A Template for Graphene Growth

The growth of single and multilayer BN films on several substrates was investigated. A typical atomic layer deposition (ALD) process was demonstrated on Si(111) substrate with a growth rate of 1.1 Å/cycle which showed good agreement with the literature value and a near stoichiometric B/N ratio. Boron nitride films were also deposited by ALD on Cu poly crystal and Cu(111) single crystal substrates for the first time, and a growth rate of ~1ML/ALD cycle was obtained with a B/N ratio of ~2. The realization of a h-BN/Cu heterojunction was the first step towards a graphene/h-BN/Cu structure which has potential application in gateable interconnects.
Date: August 2011
Creator: Zhou, Mi
System: The UNT Digital Library
Carbon Nanostructure Based Donor-acceptor Systems for Solar Energy Harvesting (open access)

Carbon Nanostructure Based Donor-acceptor Systems for Solar Energy Harvesting

Carbon nanostructure based functional hybrid molecules hold promise in solarenergy harvesting. Research presented in this dissertation systematically investigates building of various donor-acceptor nanohybrid systems utilizing enriched single walled carbon nanotube and graphene with redox and photoactive molecules such as fullerene, porphyrin, and phthalocyanine. Design, synthesis, and characterization of the donor-acceptor hybrid systems have been carefully performed via supramolecular binding strategies. Various spectroscopic studies have provided ample information in terms of establishment of the formation of donor-acceptor hybrids and their extent of interaction in solution and eventual rate of photoinduced electron and/or energy transfer. Electrochemical studies enabled construction of energy level diagram revealing energetic details of the possible different photochemical events supported by computational studies carried out to establish the HOMO-LUMO levels in the donor acceptor systems. Transient absorption studies confirmed formation of charge separated species in the donor-acceptor systems which have been supported by electron mediation experiments. Based on the photoelectrochemical studies, IPCE of 8% was reported for enriched SWCNT(7,6)-ZnP donor-acceptor systems. In summary, the present investigation on the various nanocarbon sensitized donor-acceptor hybrids substantiates tremendous prospect, that could very well become the next generation of materials in building efficient solar energy harvesting devices andphotocatalyst.
Date: December 2013
Creator: Das, Sushanta Kumar
System: The UNT Digital Library
Characterization of Aprotic Solutes and Solvents Using Abraham Model Correlations (open access)

Characterization of Aprotic Solutes and Solvents Using Abraham Model Correlations

Experimental data were obtained for the computation of mole fraction solubilities of three dichloronitrobenzenes in organic solvents at 25oC, and solubility ratios were obtained from this data. Abraham model equations were developed for solutes in tributyl phosphate that describe experimental values to within 0.15 log units, and correlations were made to describe solute partitioning in systems that contain either "wet" or "dry" tributyl phosphate. Abraham model correlations have also been developed for solute transfer into anhydrous diisopropyl ether, and these correlations fit in well with those for other ethers. Abraham correlations for the solvation of enthalpy have been derived from experimental and literature data for mesitylene, p-xylene, chlorobenzene, and 1,2-dichlorobenzene at 298.15 K. In addition, the enthalpy contribution of hydrogen bonding between these solutes and acidic solvents were predicted by these correlations and were in agreement with an established method. Residual plots corresponding to Abraham models developed in all of these studies were analyzed for trends in error between experimental and calculated values.
Date: December 2016
Creator: Brumfield, Michéla L.
System: The UNT Digital Library
Characterization of Ionic Liquid Solvents Using a Temperature Independent, Ion-Specific Abraham Parameter Model (open access)

Characterization of Ionic Liquid Solvents Using a Temperature Independent, Ion-Specific Abraham Parameter Model

Experimental data for the logarithm of the gas-to-ionic liquid partition coefficient (log K) have been compiled from the published literature for over 40 ionic liquids over a wide temperature range. Temperature independent correlations based on the Gibbs free energy equation utilizing known Abraham solvation model parameters have been derived for the prediction of log K for 12 ionic liquids to within a standard deviation of 0.114 log units over a temperature range of over 60 K. Temperature independent log K correlations have also been derived from correlations of molar enthalpies of solvation and molar entropies of solvation, each within standard deviations of 4.044 kJ mol-1 and 5.338 J mol-1 K-1, respectively. In addition, molar enthalpies of solvation and molar entropies of solvation can be predicted from the Abraham coefficients in the temperature independent log K correlations to within similar standard deviations. Temperature independent, ion specific coefficients have been determined for 26 cations and 15 anions for the prediction of log K over a temperature range of at least 60 K to within a standard deviation of 0.159 log units.
Date: December 2014
Creator: Stephens, Timothy W.
System: The UNT Digital Library
Characterization of Novel Solvents and Absorbents for Chemical Separations (open access)

Characterization of Novel Solvents and Absorbents for Chemical Separations

Predictive methods have been employed to characterize chemical separation mediums including solvents and absorbents. These studies included creating Abraham solvation parameter models for room-temperature ionic liquids (RTILs) utilizing novel ion-specific and group contribution methodologies, polydimethyl siloxane (PDMS) utilizing standard methodology, and the micelles cetyltrimethylammonium bromide (CTAB) and sodium dodecylsulfate (SDS) utilizing a combined experimental setup methodology with indicator variables. These predictive models allows for the characterization of both standard and new chemicals for use in chemical separations including gas chromatography (GC), solid phase microextraction (SPME), and micellar electrokinetic chromatography (MEKC). Gas-to-RTIL and water-to-RTIL predictive models were created with a standard deviation of 0.112 and 0.139 log units, respectively, for the ion-specific model and with a standard deviation of 0.155 and 0.177 log units, respectively, for the group contribution fragment method. Enthalpy of solvation for solutes dissolved into ionic liquids predictive models were created with ion-specific coefficients to within standard deviations of 1.7 kJ/mol. These models allow for the characterization of studied ionic liquids as well as prediction of solute-solvent properties of previously unstudied ionic liquids. Predictive models were created for the logarithm of solute's gas-to-fiber sorption and water-to-fiber sorption coefficient for polydimethyl siloxane for wet and dry conditions. These models …
Date: May 2011
Creator: Grubbs, Laura Michelle Sprunger
System: The UNT Digital Library
Characterization of Post-Plasma Etch Residues and Plasma Induced Damage Evaluation on Patterned Porous Low-K Dielectrics Using MIR-IR Spectroscopy (open access)

Characterization of Post-Plasma Etch Residues and Plasma Induced Damage Evaluation on Patterned Porous Low-K Dielectrics Using MIR-IR Spectroscopy

As the miniaturization of functional devices in integrated circuit (IC) continues to scale down to sub-nanometer size, the process complexity increases and makes materials characterization difficult. One of our research effort demonstrates the development and application of novel Multiple Internal Reflection Infrared Spectroscopy (MIR-IR) as a sensitive (sub-5 nm) metrology tool to provide precise chemical bonding information that can effectively guide through the development of more efficient process control. In this work, we investigated the chemical bonding structure of thin fluorocarbon polymer films deposited on low-k dielectric nanostructures, using Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). Complemented by functional group specific chemical derivatization reactions, fluorocarbon film was established to contain fluorinated alkenes and carbonyl moieties embedded in a highly cross-linked, branched fluorocarbon structure and a model bonding structure was proposed for the first time. In addition, plasma induced damage to high aspect ratio trench low-k structures especially on the trench sidewalls was evaluated both qualitatively and quantitatively. Damage from different plasma processing was correlated with Si-OH formation and breakage of Si-CH3 bonds with increase in C=O functionality. In another endeavor, TiN hard mask defect formation after fluorocarbon plasma etch was characterized and investigated. …
Date: May 2016
Creator: Rimal, Sirish
System: The UNT Digital Library
Chemical and Electronic Structure of Aromatic/Carborane Composite Films by PECVD for Neutron Detection (open access)

Chemical and Electronic Structure of Aromatic/Carborane Composite Films by PECVD for Neutron Detection

Boron carbide-aromatic composites, formed by plasma-enhanced co-deposition of carboranes and aromatic precursors, present enhanced electron-hole separation as neutron detector. This is achieved by aromatic coordination to the carborane icosahedra and results in improved neutron detection efficiency. Photoemission (XPS) and FTIR suggest that chemical bonding between B atoms in icosahedra and aromatic contents with preservation of π system during plasma process. XPS, UPS, density functional theory (DFT) calculations, and variable angle spectroscopic ellipsometery (VASE) demonstrate that for orthocarborane/pyridine and orthocarborane/aniline films, states near the valence band maximum are aromatic in character, while states near the conduction band minimum include those of either carborane or aromatic character. Thus, excitation across the band gap results in electrons and holes on carboranes and aromatics, respectively. Further such aromatic-carborane interaction dramatically shrinks the indirect band gap from 3 eV (PECVD orthocarborane) to ~ 1.6 eV (PECVD orthocarborane/pyridine) to ~1.0 eV (PECVD orthocarborane/aniline), with little variation in such properties with aromatic/orthocarborane stoichiometry. The narrowed band gap indicate the potential for greatly enhanced charge generation relative to PECVD orthocarborane films, as confirmed by zero-bias neutron voltaic studies. The results indicate that the enhanced electron-hole separation and band gap narrowing observed for aromatic/orthocarborane films relative to PECVD orthocarborane, …
Date: December 2016
Creator: Dong, Bin
System: The UNT Digital Library
Cu Electrodeposition on Ru-Ta and Corrosion of Plasma Treated Cu in Post Etch Cleaning Solution (open access)

Cu Electrodeposition on Ru-Ta and Corrosion of Plasma Treated Cu in Post Etch Cleaning Solution

In this work, the possibility of Cu electrodeposition on Ru-Ta alloy thin films is explored. Ru and Ta were sputter deposited on Si substrate with different composition verified by RBS. Four point probe, XRD, TEM and AFM were used to study the properties of Ru-Ta thin films such as sheet resistance, crystallinity, grain size, etc. Cyclic voltammetry is used to study the Cu electrodeposition characteristics on Ru-Ta after various surface pretreatments. The results provide insights on the removal of Ta oxide such that it enables better Cu nucleation and adhesion. Bimetallic corrosion of Cu on modified Ru-Ta surface was studied in CMP related chemicals. In Cu interconnect fabrication process, the making of trenches and vias on low-k dielectric films involves the application of fluorocarbon plasma etch gases. Cu microdots deposited on Ru and Ta substrate were treated by fluorocarbon plasma etch gases such as CF4, CF4+O2, CH2F2, C4F8 and SF6 and investigated by using x-ray photoelectron spectroscopy, contact angle measurement and electrochemical techniques. Micropattern corrosion screening technique was used to measure the corrosion rate of plasma treated Cu. XPS results revealed different surface chemistry on Cu after treating with plasma etching. The fluorine/carbon ratio of the etching gases results in …
Date: August 2011
Creator: Sundararaju Meenakshiah Pillai, Karthikeyan
System: The UNT Digital Library
Design and Development of Soft Landing Ion Mobility: A Novel Instrument for Preparative Material Development (open access)

Design and Development of Soft Landing Ion Mobility: A Novel Instrument for Preparative Material Development

The design and fabrication of a novel soft landing instrument Soft Landing Ion Mobility (SLIM) is described here. Topics covered include history of soft landing, gas phase mobility theory, the design and fabrication of SLIM, as well as applications pertaining to soft landing. Principle applications devised for this instrument involved the gas phase separation and selection of an ionized component from a multicomponent gas phase mixture as combing technique to optimize coatings, catalyst, and a variety of alternative application in the sciences.
Date: August 2011
Creator: Davila, Stephen Juan
System: The UNT Digital Library
Design Considerations and Implementation of Portable Mass Spectrometers for Environmental Applications (open access)

Design Considerations and Implementation of Portable Mass Spectrometers for Environmental Applications

Portable mass spectrometers provide a unique opportunity to obtain in situ measurements. This minimizes need for sample collection or in laboratory analysis. Membrane Inlet Mass Spectrometry (MIMS) utilizing a semi permeable membrane for selective rapid introduction for analysis. Polydimethylsiloxane membranes have been proven to be robust in selecting for aromatic chemistries. Advances in front end design have allowed for increased sensitivity, rapid sample analysis, and on line measurements. Applications of the membrane inlet technique have been applied to environmental detection of clandestine drug chemistries and pollutants. Emplacement of a mass spectrometer unit in a vehicle has allowed for large areas to be mapped, obtaining a rapid snapshot of the various concentrations and types of environmental pollutants present. Further refinements and miniaturization have allowed for a backpackable system for analysis in remote harsh environments. Inclusion of atmospheric dispersion modeling has yielded an analytical method of approximating upwind source locations, which has law enforcement, military, and environmental applications. The atmospheric dispersion theories have further been applied to an earth based separation, whereby chemical properties are used to approximate atmospheric mobility, and chemistries are further identified has a portable mass spectrometer is traversed closer to a point source.
Date: May 2017
Creator: Mach, Phillip M.
System: The UNT Digital Library
Determination of Molecular Descriptors for Illegal Drugs by Gc-fid Using Abraham Solvation Model (open access)

Determination of Molecular Descriptors for Illegal Drugs by Gc-fid Using Abraham Solvation Model

The Abraham solvation parameter model is a good approach for analyzing and predicting biological activities and partitioning coefficients. The general solvation equation has been used to predict the solute property (SP) behavior of drug compounds between biological barriers. Gas chromatography (GC) retention time can be used to predict molecular descriptors, such as E, S, A, B & L for existing and newly developed drug compounds. In this research, six columns of different stationary phases were used to predict the Abraham molecular descriptors more accurately. The six stationary phases used were 5% phenylmethyl polysiloxane, 6% cyanopropylphenyl 94% dimethylpolysiloxane, 5% diphenyl 95% dimethylpolysiloxane, 100% dimethylpolysiloxane, polyethylene glycol and 35% diphenyl 65% dimethylpolysiloxane. Retention times (RT) of 75 compounds have been measured and logarithm of experimental average retention time Ln(RTexp) are calculated. The Abraham solvation model is then applied to predict the process coefficients of these compounds using the literature values of the molecular descriptors (Acree Compilation descriptors). Six correlation equations are built up as a training set for each of the six columns. The six equations are then used to predict the molecular descriptors of the illegal drugs as a test set. This work shows the ability to extract molecular information from …
Date: December 2013
Creator: Akhter, Syeda Sabrina
System: The UNT Digital Library
Determination of Solute Descriptors for Illicit Drugs Using Gas Chromatographic Retention Data and Abraham Solvation Model (open access)

Determination of Solute Descriptors for Illicit Drugs Using Gas Chromatographic Retention Data and Abraham Solvation Model

In this experiment, more than one hundred volatile organic compounds were analyzed with the gas chromatograph. Six capillary columns ZB wax plus, ZB 35, TR1MS, TR5, TG5MS and TG1301MS with different polarities have been used for separation of compounds and illicit drugs. The Abraham solvation model has five solute descriptors. The solute descriptors are E, S, A, B, L (or V). Based on the six stationary phases, six equations were constructed as a training set for each of the six columns. The six equations served to calculate the solute descriptors for a set of illicit drugs. Drugs studied are nicotine (S= 0.870, A= 0.000, B= 1.073), oxycodone(S= 2.564. A= 0.286, B= 1.706), methamphetamine (S= 0.297, A= 1.570, B= 1.009), heroin (S=2.224, A= 0.000, B= 2.136) and ketamine (S= 1.005, A= 0.000, B= 1.126). The solute property of Abraham solvation model is represented as a logarithm of retention time, thus the logarithm of experimental and calculated retention times is compared.
Date: August 2015
Creator: Mitheo, Yannick K.
System: The UNT Digital Library
Development of a Laponite Pluronic Composite for Foaming Applications (open access)

Development of a Laponite Pluronic Composite for Foaming Applications

The focus of the following research was to provide an optimized particle stabilized foam of Laponite and Pluronic L62 in water by understanding (1) the Laponite-Pluronic interactions and properties for improved performance in a particle stabilized foam and (2) the interfacial properties between air and the Laponite-Pluronic complex. These studies were conducted using both bulk and interfacial rheology, XRD, sessile droplet, TGA and UV-vis. Two novel and simple techniques, lamella break point and capillary breakup extensional rheometry, were used to both understand the Laponite Pluronic L62 interaction and determine a different mechanism for foaming properties. Bulk rheological properties identified an optimal Laponite concentration of 2% with Pluronic L62 ranging from 2.5% and 6.5%, due to the ease of flow for the dispersion. The Pluronic L62 was observed to enhance the Laponite bulk rheological properties in solution. Additionally TGA showed a similar trend in thermal resistance to water with both addition of Laponite and Pluronic L62. XRD demonstrated that 0.25% Pluronic intercalated into Laponite from dried 2% Laponite films. XRD demonstrated that the Laponite matrix was saturated at 1% Pluronic L62. UV-vis demonstrated that a monolayer of Pluronic L62 is observed up to 0.65% Pluronic L62 onto Laponite. Interfacial rheology showed …
Date: December 2012
Creator: Davis, James William
System: The UNT Digital Library
The Development of an Analytical Microwave Electromagnetic Pulse Transmission Probe and Preliminary Test Results (open access)

The Development of an Analytical Microwave Electromagnetic Pulse Transmission Probe and Preliminary Test Results

Within this educational endeavor instrumental development was explored through the investigation of microwave induce stable electromagnetic waves within a non-linear yttrium iron garnet ferromagnetic waveguide. The resulting magnetostatic surface waves were investigated as a possible method of rapid analytical evaluation of material composition. Initial analytical results indicate that the interaction seen between wave and material electric and magnetic fields will allow phase coherence recovery andanalysis leading to enhancement of analytical value. The ferromagnetic waveguide selected for this research was a high quality monocrystalline YIG (yttrium iron garnet) film. Magnetostatic spin waves (MSW) were produced within the YIG thin waveguide. Spin waves with desired character were used to analytically scan materials within the liquid and solid phase.
Date: May 2011
Creator: Griffith, William Francis
System: The UNT Digital Library
Development of Novel Semi-conducting Ortho-carborane Based Polymer Films: Enhanced Electronic and Chemical Properties (open access)

Development of Novel Semi-conducting Ortho-carborane Based Polymer Films: Enhanced Electronic and Chemical Properties

A novel class of semi-conducting ortho-carborane (B10C2H12) based polymer films with enhanced electronic and chemical properties has been developed. The novel films are formed from electron-beam cross-linking of condensed B10C2H12 and B10C2H12 co-condensed with aromatic linking units (Y) (Y=1,4-diaminobenzene (DAB), benzene (BNZ) and pyridine (PY)) at 110 K. The bonding and electronic properties of the novel films were investigated using X-ray photoelectron spectroscopy (XPS), UV photoelectron spectroscopy (UPS) and Mulliken charge analysis using density functional theory (DFT). These films exhibit site-specific cross-linking with bonding, in the pure B10C2HX films, occurring at B sites non-adjacent to C in the B10C2H12 icosahedra. The B10C2H12:Y films exhibit the same phenomena, with cross-linking that creates bonds primarily between B sites non-adjacent to C in the B10C2H12 icosahedra to C sites in the Y linking units. These novel B10C2HX: Y linked films exhibit significantly different electron structure when compared to pure B10C2HX films as seen in the UPS spectra. The valence band maxima (VBM) shift from - 4.3 eV below the Fermi level for pure B10C2HX to -2.6, -2.2, and -1.7 for B10C2HX:BNZ, B10C2HX:PY, and B10C2HX:DAB, respectively. The top of the valence band is composed of states derived primarily from the Y linking units, suggesting …
Date: August 2013
Creator: Pasquale, Frank L.
System: The UNT Digital Library
Direct Atomic Level Controlled Growth and Characterization of h-BN and Graphene Heterostructures on Magnetic Substrates for Spintronic Applications (open access)

Direct Atomic Level Controlled Growth and Characterization of h-BN and Graphene Heterostructures on Magnetic Substrates for Spintronic Applications

Epitaxial multilayer h-BN(0001) heterostructures and graphene/h-BN heterostructures have many potential applications in spintronics. The use of h-BN and graphene require atomically precise control and azimuthal alignment of the individual layers in the structure. These in turn require fabrication of devices by direct scalable methods rather than physical transfer of BN and graphene flakes, and such scalable methods are also critical for industrially compatible development of 2D devices. The growth of h-BN(0001) multilayers on Co and Ni, and graphene/h-BN(0001) heterostructures on Co have been studied which meet these criteria. Atomic Layer Epitaxy (ALE) of BN was carried out resulting in the formation of macroscopically continuous h-BN(0001) multilayers using BCl3 and NH3 as precursors. X-ray photoemission spectra (XPS) show that the films are stoichiometric with an average film thickness linearly proportional to the number of BCl3/NH3 cycles. Molecular beam epitaxy (MBE) of C yielded few layer graphene in azimuthal registry with BN/Co(0001) substrate. Low energy electron diffraction (LEED) measurements indicate azimuthally oriented growth of both BN and graphene layers in registry with the substrate lattice. Photoemission data indicate B:N atomic ratios of 1:1. Direct growth temperatures of 600 K for BN and 800 to 900 K for graphene MBE indicate multiple integration …
Date: August 2016
Creator: Beatty, John D.
System: The UNT Digital Library
Direct Inject Mass Spectrometry for Illicit Chemistry Detection and Characterization (open access)

Direct Inject Mass Spectrometry for Illicit Chemistry Detection and Characterization

The field of direct inject mass spectrometry includes a massive host of ambient ionization techniques that are especially useful for forensic analysts. Whether the sample is trace amounts of drugs or explosives or bulk amounts of synthetic drugs from a clandestine laboratory, the analysis of forensic evidence requires minimal sample preparation, evidence preservation, and high sensitivity. Direct inject mass spectrometry techniques can rarely provide all of these. Direct analyte-probed nanoextraction coupled to nanospray ionization mass spectrometry, however, is certainly capable of achieving these goals. As a multifaceted tool developed in the Verbeck laboratory, many forensic applications have since been investigated (trace drug and explosives analysis). Direct inject mass spectrometry can also be easily coupled to assays to obtain additional information about the analytes in question. By performing a parallel artificial membrane assay or a cell membrane stationary phase extraction prior to direct infusion of the sample, membrane permeability data and receptor activity data can be obtained in addition to the mass spectral data that was already being collected. This is particularly useful for characterizing illicit drugs and their analogues for a biologically relevant way to schedule new psychoactive substances.
Date: May 2016
Creator: Williams, Kristina Charlene
System: The UNT Digital Library
The Effect of Plasma on Silicon Nitride, Oxynitride and Other Metals for Enhanced Epoxy Adhesion for Packaging Applications (open access)

The Effect of Plasma on Silicon Nitride, Oxynitride and Other Metals for Enhanced Epoxy Adhesion for Packaging Applications

The effects of direct plasma chemistries on carbon removal from silicon nitride (SiNx) and oxynitride (SiOxNy ) surfaces and Cu have been studied by x-photoelectron spectroscopy (XPS) and ex-situ contact angle measurements. The data indicate that O2,NH3 and He capacitively coupled plasmas are effective at removing adventitious carbon from silicon nitride (SiNx) and Silicon oxynitride (SiOxNy ) surfaces. O2plasma and He plasma treatment results in the formation of silica overlayer. In contrast, the exposure to NH3 plasma results in negligible additional oxidation of the SiNx and SiOxNy surface. Ex-situ contact angle measurements show that SiNx and SiOxNy surfaces when exposed to oxygen plasma are initially more hydrophilic than surfaces exposed to NH3 plasma and He plasma, indicating that the O2 plasma-induced SiO2 overlayer is highly reactive towards ambient corresponding to increased roughness measured by AFM. At longer ambient exposures (>~10 hours), however surfaces treated by either O2, He or NH3 plasma exhibit similar steady state contact angles, correlated with rapid uptake of adventitious carbon, as determined by XPS. Surface passivation by exposure to molecular hydrogen prior to ambient exposure significantly retards the increase in the contact angle upon the exposure to ambient. The results suggest a practical route to enhancing …
Date: August 2014
Creator: Gaddam, Sneha Sen
System: The UNT Digital Library
Electrochemical Depostion of Bismuth on Ruthenium and Ruthenium Oxide Surfaces (open access)

Electrochemical Depostion of Bismuth on Ruthenium and Ruthenium Oxide Surfaces

Cyclic voltammetry experiments were performed to compare the electrodeposition characteristics of bismuth on ruthenium. Two types of electrodes were used for comparison: a Ru shot electrode (polycrystalline) and a thin film of radio-frequency sputtered Ru on a Ti/Si(100) support. Experiments were performed in 1mM Bi(NO3)3/0.5M H2SO4 with switching potentials between -0.25 and 0.55V (vs. KCl sat. Ag/AgCl) and a 20mV/s scan rate. Grazing incidence x-ray diffraction (GIXRD) determined the freshly prepared thin film electrode was hexagonally close-packed. After thermally oxidizing at 600°C for 20 minutes, the thin film adopts the tetragonal structure consistent with RuO2. a hydrated oxide film (RuOx?(H2O)y) was made by holding 1.3V on the surface of the film in H2SO4 for 60 seconds and was determined to be amorphous. Underpotential deposition of Bi was observed on the metallic surfaces and the electrochemically oxidized surface; it was not observed on the thermal oxide.
Date: May 2012
Creator: Taylor, Daniel M.
System: The UNT Digital Library
Electrochemical Quartz Crystal Microbalance Study Of Bismuth Underpotential Deposition On Ruthenium And On Electrochemically Formed Ruthenium Oxide (open access)

Electrochemical Quartz Crystal Microbalance Study Of Bismuth Underpotential Deposition On Ruthenium And On Electrochemically Formed Ruthenium Oxide

Kinetics and thermodynamics of bismuth (Bi) underpotential deposition (UPD) on ruthenium (Ru) and on electrochemically formed Ru oxide are studied using electrochemical quartz crystal microbalance technique. The Bi UPD and Bi bulk deposition are observed both on Ru and on electrochemically formed Ru oxide electrodes. The anodic peak potential of Bi UPD shifts slightly to positive potential as the scan rate increases. The peak current ratio (IAnode/ICathode) of Bi UPD and Bi bulk increases as the scan rate increases. Bi monolayer coverage calculated from mass (MLMass) and from charge (MLCharge) with scan rates dependent are compared both in Bi UPD region and in Bi bulk region. Stability and oxidation time effects are also investigated. Bi UPD on Ru and on electrochemically formed Ru oxide are quasi-reversible, scan rate independent, oxidation time dependent, and have higher plating efficiency on Ru. However, Bi bulk deposition on Ru and on electrochemically formed Ru oxide are quasi-reversible, scan rate dependent, oxidation time independent, and have higher plating efficiency on electrochemically formed Ru oxide. Both Bi UPD adatoms and Bi bulk are unstable in 0.5M H2SO4.
Date: December 2011
Creator: Lin, Po-Fu
System: The UNT Digital Library
Electrochemical Synthesis and Applications of Layered Double Hydroxides and Derivatives (open access)

Electrochemical Synthesis and Applications of Layered Double Hydroxides and Derivatives

Layered double hydroxides (LDH) are a class of anionic clay with alternating layers of positive and negative charge. A metal hydroxide layer with divalent and trivalent metals with a positive charge is complemented by an interlayer region containing anions and water with a negative charge. The anions can be exchanged under favorable conditions. Hydrotalcite (Mg6Al2(OH)16[CO3]·4H2O) and other variations are naturally occurring minerals. Synthetic LDH can be prepared as a powder or film by numerous methods. Synthetic LDH is used in electrode materials, adsorbents, nuclear waste treatment, drug delivery systems, water treatment, corrosion protection coatings, and catalysis. In this dissertation Zn-Al-NO3 derivatives of zaccagnaite (Zn4Al2(OH)12[CO3]·3H2O) are electrochemically synthesized as films and applied to sensing and corrosion resistance applications. First, Zn-Al-NO3 LDH was potentiostatically electrosynthesized on glassy carbon substrates and applied to the electrochemical detection of gallic acid and caffeic acid in aqueous solutions. The modified electrode was then applied to the detection of gallic acid in green tea samples. The focus of the work shifts to corrosion protection of stainless steel. Modified zaccagnaite films were electrodeposited onto stainless steel in multiples layers to reduce defects caused by drying of the films. The films were deposited using a step potential method. The …
Date: August 2015
Creator: Kahl, Michael S.
System: The UNT Digital Library
Electrochemically Deposited Metal Alloy-silicate Nanocomposite Corrosion Resistant Materials (open access)

Electrochemically Deposited Metal Alloy-silicate Nanocomposite Corrosion Resistant Materials

Zinc-nickel ?-phase silicate and copper-nickel silicate corrosion resistant coatings have been prepared via electrochemical methods to improve currently available corrosion resistant materials in the oil and gas industry. A layered silicate, montmorillonite, has been incorporated into the coatings for increased corrosion protection. For the zinc nickel silicate coatings, optimal plating conditions were determined to be a working pH range of 9.3 -9.5 with a borate based electrolyte solution, resulting in more uniform deposits and better corrosion protection of the basis metal as compared to acidic conditions. Quality, strongly adhering deposits were obtained quickly with strong, even overall coverage of the metal substrate. The corrosion current of the zinc-nickel-silicate coating is Icorr = 3.33E-6 for a borate based bath as compared to a zinc-nickel bath without silicate incorporation (Icorr = 3.52E-5). Step potential and direct potential methods were examined, showing a morphological advantage to step potential deposition. The effect of borate addition was examined in relation to zinc, nickel and zinc-nickel alloy deposition. Borate was found to affect the onset of hydrogen evolution and was examined for absorption onto the electrode surface. For copper-nickel silicate coatings, optimal conditions were determined to be a citrate based electrolytic bath, with pH = 6. …
Date: May 2013
Creator: Conrad, Heidi Ann
System: The UNT Digital Library
Electrodeposited Metal Matrix Composites for Enhanced Corrosion Protection and Mechanical Properties (open access)

Electrodeposited Metal Matrix Composites for Enhanced Corrosion Protection and Mechanical Properties

In the oil and gas industry, high corrosion resistance and hardness are needed to extend the lifetime of the coatings due to exposure to high stress and salt environments. Electrodeposition has become a favorable technique in synthesizing coatings because of low cost, convenience, and the ability to work at low temperatures. Electrodeposition of metal matrix composites has become popular for enhanced corrosion resistance and hardness in the oil and gas industry because of the major problems that persist with corrosion. Two major alloys of copper-nickel, 90-10 and 70-30, were evaluated for microbial corrosion protection in marine environments on a stainless steel substrate. Copper and copper alloys are commonly used in marine environments to resist biofouling of materials by inhibiting microbial growth. Literature surveying the electrodeposition of Cu-Ni incorporated with nano- to micro- particles to produce metal matrix composites has been reviewed. Also, a novel flow cell design for the enhanced deposition of metal matrix composites was examined to obtain the optimal oriented structure of the layered silicates in the metal matrix. With the addition of montmorillonite into the Ni and Cu-Ni matrix, an increase in strength, adhesion, wear and fracture toughness of the coating occurs, which leads to an increase …
Date: May 2016
Creator: Thurber, Casey Ray
System: The UNT Digital Library