In-Situ Monitoring for Quality Assurance and Machine Learning in Direct-Write Additive Manufacturing of 5G RF Electronic Ceramics (open access)

In-Situ Monitoring for Quality Assurance and Machine Learning in Direct-Write Additive Manufacturing of 5G RF Electronic Ceramics

Data management plan for the grant, "In-Situ Monitoring for Quality Assurance and Machine Learning in Direct-Write Additive Manufacturing of 5G RF Electronic Ceramics." The principal near-term objective of the PI is to use in-situ monitoring to define the processing rules that determine the microstructure, macrostructure, and high-frequency dielectric response of electronic ceramic materials for advanced RF “grown” by laser-assisted direct-write AM. In-situ measurements will be correlated and validated with ex-situ characterization, and these data will iteratively guide synthesis and processing optimization. In parallel, the experimental measurements will be used as inputs for the physics-based process modeling. Predictions from the experimentally validated models will in turn: 1) guide synthesis and processing optimization and, 2) train and constrain ML. Thus, quality assurance is achieved.
Date: 2022-09-01/2025-06-30
Creator: Shepherd, Nigel D.
Object Type: Text
System: The UNT Digital Library
Development of Combinatorial Processing Techniques for Accelerated Discovery of Complex Concentrated Alloy (or Multi-Principal Element Alloys) for Structural Applications (open access)

Development of Combinatorial Processing Techniques for Accelerated Discovery of Complex Concentrated Alloy (or Multi-Principal Element Alloys) for Structural Applications

Data management plan for the research grant, "Development of Combinatorial Processing Techniques for Accelerated Discovery of Complex Concentrated Alloy (or Multi-Principal Element Alloys) for Structural Applications"
Date: 2022-05-15/2023-05-14
Creator: Banerjee, Rajarshi
Object Type: Text
System: The UNT Digital Library
Editorial: Superlubricity across the scales (open access)

Editorial: Superlubricity across the scales

Article talks about how while the idea of frictionless surfaces and the associated implications of vanishing energy losses during mechanical motion have been part of science fiction culture, scientists in the real world work toward realizing this ambitious goal that was once thought to be unattainable. The overarching goal of the research topic titled “Superlubricity Across the Scales” is to provide a snapshot of the latest developments in this rapidly accelerating field of research.
Date: October 26, 2022
Creator: Baykara, Mehmet Z.; Berman, Diana & Rosenkranz, Andreas
Object Type: Article
System: The UNT Digital Library
Stability and degradation in triple cation and methyl ammonium lead iodide perovskite solar cells mediated viaAu andAg electrodes (open access)

Stability and degradation in triple cation and methyl ammonium lead iodide perovskite solar cells mediated viaAu andAg electrodes

Article states that perovskite solar cells (PSCs), particularly based on the methyl ammonium lead iodide (MAPbI3) formulation, have been of intense interest for the past decade within the photovoltaics (PV) community, but their long-term stability under operational conditions and environmental storage are still prime challenges to be overcome towards their commercialization. The authors have conducted a comprehensive analysis on the impact of the electrode collector layer, specifically Ag and Au, on the degradation mechanism associated with the MAPbI3 and a triple cation absorber. The authors hypothesize the mechanism of degradation, arising from the Ag interaction with the absorber through the formation of AgI in the PSCs, leads to corrosion of the perovskite absorber, as opposed to the benign AuI when Au electrodes are used in the solar cell stack.
Date: September 3, 2022
Creator: Kakaraparthi, Kranthiraja; Parashar, Mritunjaya; Mehta, Ravindra K.; Aryal, Sujan; Temsal, Mahdi & Kaul, Anupama
Object Type: Article
System: The UNT Digital Library
Friction stir welding of SS 316 LN and Nitronic 50 jacket sections for application in superconducting fusion magnet systems (open access)

Friction stir welding of SS 316 LN and Nitronic 50 jacket sections for application in superconducting fusion magnet systems

Article explores the possibility of using friction stir welding (FSW) to join jacket web sections of two nitrogen-containing stainless steels for housing internally cooled superconducting cables which are utilized to generate magnetic fields in tokamak type fusion reactor systems. It has been shown that the FSW fabricated SS 316 LN jackets possessed the required strength and magnetic properties critical to this application.
Date: July 16, 2022
Creator: Gaddam, Supreeth; Haridas, Ravi Sankar; Sanabria, Charlie; Tammana, Deepthi; Berman, Diana & Mishra, R. S.
Object Type: Article
System: The UNT Digital Library

Plexcitonic interactions in spherical and bi-pyramidical Au nanoparticles with monolayer WSe₂

Article describes how plasmons associated with zero-dimensional (0D) metal nanoparticles and their synergistic interactions with excitons in two-dimensional (2D) semiconductors offer opportunities for remarkable spectral tunability not otherwise evident in the pristine parent materials, which necessitates an in-depth study elucidating the nature of the plasmonic and excitonic interactions, jointly referred to as plexcitons in order to understand the foundational aspects of the light–matter interactions in hybrid 0D–2D systems. The authors examine the plexcitonic interactions of van der Waals (vdWs) hybrid structures composed of 2D WSe2 and 0D Au nanoparticles (Au-NPs) in their spherical (Au-Sp) and bi-pyramidical (Au-BP) architectures, which demonstrates that geometry-mediated response of the AuNPs provides another degree of freedom to modulate the carrier photodynamics in WSe₂.
Date: November 15, 2022
Creator: Jayanand, Kishan & Kaul, Anupama
Object Type: Article
System: The UNT Digital Library