312 Matching Results

Results open in a new window/tab.

Computational Methods to Optimize High-Consequence Variants of the Vehicle Routing Problem for Relief Networks in Humanitarian Logistics (open access)

Computational Methods to Optimize High-Consequence Variants of the Vehicle Routing Problem for Relief Networks in Humanitarian Logistics

Optimization of relief networks in humanitarian logistics often exemplifies the need for solutions that are feasible given a hard constraint on time. For instance, the distribution of medical countermeasures immediately following a biological disaster event must be completed within a short time-frame. When these supplies are not distributed within the maximum time allowed, the severity of the disaster is quickly exacerbated. Therefore emergency response plans that fail to facilitate the transportation of these supplies in the time allowed are simply not acceptable. As a result, all optimization solutions that fail to satisfy this criterion would be deemed infeasible. This creates a conflict with the priority optimization objective in most variants of the generic vehicle routing problem (VRP). Instead of efficiently maximizing usage of vehicle resources available to construct a feasible solution, these variants ordinarily prioritize the construction of a minimum cost set of vehicle routes. Research presented in this dissertation focuses on the design and analysis of efficient computational methods for optimizing high-consequence variants of the VRP for relief networks. The conflict between prioritizing the minimization of the number of vehicles required or the minimization of total travel time is demonstrated. The optimization of the time and capacity constraints in …
Date: August 2018
Creator: Urbanovsky, Joshua C.
Object Type: Thesis or Dissertation
System: The UNT Digital Library
Dataflow Processing in Memory Achieves Significant Energy Efficiency (open access)

Dataflow Processing in Memory Achieves Significant Energy Efficiency

The large difference between processor CPU cycle time and memory access time, often referred to as the memory wall, severely limits the performance of streaming applications. Some data centers have shown servers being idle three out of four clocks. High performance instruction sequenced systems are not energy efficient. The execute stage of even simple pipeline processors only use 9% of the pipeline's total energy. A hybrid dataflow system within a memory module is shown to have 7.2 times the performance with 368 times better energy efficiency than an Intel Xeon server processor on the analyzed benchmarks. The dataflow implementation exploits the inherent parallelism and pipelining of the application to improve performance without the overhead functions of caching, instruction fetch, instruction decode, instruction scheduling, reorder buffers, and speculative execution used by high performance out-of-order processors. Coarse grain reconfigurable logic in an energy efficient silicon process provides flexibility to implement multiple algorithms in a low energy solution. Integrating the logic within a 3D stacked memory module provides lower latency and higher bandwidth access to memory while operating independently from the host system processor.
Date: August 2018
Creator: Shelor, Charles F.
Object Type: Thesis or Dissertation
System: The UNT Digital Library
An Accelerometer-based Gesture Recognition System for a Tactical Communications Application (open access)

An Accelerometer-based Gesture Recognition System for a Tactical Communications Application

In modern society, computers are primarily interacted with via keyboards, touch screens, voice recognition, video analysis, and many others. For certain applications, these methods may be the most efficient interface. However, there are applications that we can conceive where a more natural interface could be convenient and connect humans and computers in a more intuitive and natural way. These applications are gesture recognition systems and range from the interpretation of sign language by a computer to virtual reality control. This Thesis proposes a gesture recognition system that primarily uses accelerometers to capture gestures from a tactical communications application. A segmentation algorithm is developed based on the accelerometer energy to segment these gestures from an input sequence. Using signal processing and machine learning techniques, the segments are reduced to mathematical features and classified with support vector machines. Experimental results show that the system achieves an overall gesture recognition accuracy of 98.9%. Additional methods, such as non-gesture recognition/suppression, are also proposed and tested.
Date: December 2015
Creator: Tidwell, Robert S., Jr.
Object Type: Thesis or Dissertation
System: The UNT Digital Library
Detection of Ulcerative Colitis Severity and Enhancement of Informative Frame Filtering Using Texture Analysis in Colonoscopy Videos (open access)

Detection of Ulcerative Colitis Severity and Enhancement of Informative Frame Filtering Using Texture Analysis in Colonoscopy Videos

There are several types of disorders that affect our colon’s ability to function properly such as colorectal cancer, ulcerative colitis, diverticulitis, irritable bowel syndrome and colonic polyps. Automatic detection of these diseases would inform the endoscopist of possible sub-optimal inspection during the colonoscopy procedure as well as save time during post-procedure evaluation. But existing systems only detects few of those disorders like colonic polyps. In this dissertation, we address the automatic detection of another important disorder called ulcerative colitis. We propose a novel texture feature extraction technique to detect the severity of ulcerative colitis in block, image, and video levels. We also enhance the current informative frame filtering methods by detecting water and bubble frames using our proposed technique. Our feature extraction algorithm based on accumulation of pixel value difference provides better accuracy at faster speed than the existing methods making it highly suitable for real-time systems. We also propose a hybrid approach in which our feature method is combined with existing feature method(s) to provide even better accuracy. We extend the block and image level detection method to video level severity score calculation and shot segmentation. Also, the proposed novel feature extraction method can detect water and bubble frames …
Date: December 2015
Creator: Dahal, Ashok
Object Type: Thesis or Dissertation
System: The UNT Digital Library
Freeform Cursive Handwriting Recognition Using a Clustered Neural Network (open access)

Freeform Cursive Handwriting Recognition Using a Clustered Neural Network

Optical character recognition (OCR) software has advanced greatly in recent years. Machine-printed text can be scanned and converted to searchable text with word accuracy rates around 98%. Reasonably neat hand-printed text can be recognized with about 85% word accuracy. However, cursive handwriting still remains a challenge, with state-of-the-art performance still around 75%. Algorithms based on hidden Markov models have been only moderately successful, while recurrent neural networks have delivered the best results to date. This thesis explored the feasibility of using a special type of feedforward neural network to convert freeform cursive handwriting to searchable text. The hidden nodes in this network were grouped into clusters, with each cluster being trained to recognize a unique character bigram. The network was trained on writing samples that were pre-segmented and annotated. Post-processing was facilitated in part by using the network to identify overlapping bigrams that were then linked together to form words and sentences. With dictionary assisted post-processing, the network achieved word accuracy of 66.5% on a small, proprietary corpus. The contributions in this thesis are threefold: 1) the novel clustered architecture of the feed-forward neural network, 2) the development of an expanded set of observers combining image masks, modifiers, and feature …
Date: August 2015
Creator: Bristow, Kelly H.
Object Type: Thesis or Dissertation
System: The UNT Digital Library
Ontology Based Security Threat Assessment and Mitigation for Cloud Systems (open access)

Ontology Based Security Threat Assessment and Mitigation for Cloud Systems

A malicious actor often relies on security vulnerabilities of IT systems to launch a cyber attack. Most cloud services are supported by an orchestration of large and complex systems which are prone to vulnerabilities, making threat assessment very challenging. In this research, I developed formal and practical ontology-based techniques that enable automated evaluation of a cloud system's security threats. I use an architecture for threat assessment of cloud systems that leverages a dynamically generated ontology knowledge base. I created an ontology model and represented the components of a cloud system. These ontologies are designed for a set of domains that covers some cloud's aspects and information technology products' cyber threat data. The inputs to our architecture are the configurations of cloud assets and components specification (which encompass the desired assessment procedures) and the outputs are actionable threat assessment results. The focus of this work is on ways of enumerating, assessing, and mitigating emerging cyber security threats. A research toolkit system has been developed to evaluate our architecture. We expect our techniques to be leveraged by any cloud provider or consumer in closing the gap of identifying and remediating known or impending security threats facing their cloud's assets.
Date: December 2018
Creator: Kamongi, Patrick
Object Type: Thesis or Dissertation
System: The UNT Digital Library
Toward Supporting Fine-Grained, Structured, Meaningful and Engaging Feedback in Educational Applications (open access)

Toward Supporting Fine-Grained, Structured, Meaningful and Engaging Feedback in Educational Applications

Recent advancements in machine learning have started to put their mark on educational technology. Technology is evolving fast and, as people adopt it, schools and universities must also keep up (nearly 70% of primary and secondary schools in the UK are now using tablets for various purposes). As these numbers are likely going to follow the same increasing trend, it is imperative for schools to adapt and benefit from the advantages offered by technology: real-time processing of data, availability of different resources through connectivity, efficiency, and many others. To this end, this work contributes to the growth of educational technology by developing several algorithms and models that are meant to ease several tasks for the instructors, engage students in deep discussions and ultimately, increase their learning gains. First, a novel, fine-grained knowledge representation is introduced that splits phrases into their constituent propositions that are both meaningful and minimal. An automated extraction algorithm of the propositions is also introduced. Compared with other fine-grained representations, the extraction model does not require any human labor after it is trained, while the results show considerable improvement over two meaningful baselines. Second, a proposition alignment model is created that relies on even finer-grained units of …
Date: December 2018
Creator: Bulgarov, Florin Adrian
Object Type: Thesis or Dissertation
System: The UNT Digital Library
Adaptive Power Management for Autonomic Resource Configuration in Large-scale Computer Systems (open access)

Adaptive Power Management for Autonomic Resource Configuration in Large-scale Computer Systems

In order to run and manage resource-intensive high-performance applications, large-scale computing and storage platforms have been evolving rapidly in various domains in both academia and industry. The energy expenditure consumed to operate and maintain these cloud computing infrastructures is a major factor to influence the overall profit and efficiency for most cloud service providers. Moreover, considering the mitigation of environmental damage from excessive carbon dioxide emission, the amount of power consumed by enterprise-scale data centers should be constrained for protection of the environment.Generally speaking, there exists a trade-off between power consumption and application performance in large-scale computing systems and how to balance these two factors has become an important topic for researchers and engineers in cloud and HPC communities. Therefore, minimizing the power usage while satisfying the Service Level Agreements have become one of the most desirable objectives in cloud computing research and implementation. Since the fundamental feature of the cloud computing platform is hosting workloads with a variety of characteristics in a consolidated and on-demand manner, it is demanding to explore the inherent relationship between power usage and machine configurations. Subsequently, with an understanding of these inherent relationships, researchers are able to develop effective power management policies to optimize …
Date: August 2015
Creator: Zhang, Ziming
Object Type: Thesis or Dissertation
System: The UNT Digital Library
Automatic Removal of Complex Shadows From Indoor Videos (open access)

Automatic Removal of Complex Shadows From Indoor Videos

Shadows in indoor scenarios are usually characterized with multiple light sources that produce complex shadow patterns of a single object. Without removing shadow, the foreground object tends to be erroneously segmented. The inconsistent hue and intensity of shadows make automatic removal a challenging task. In this thesis, a dynamic thresholding and transfer learning-based method for removing shadows is proposed. The method suppresses light shadows with a dynamically computed threshold and removes dark shadows using an online learning strategy that is built upon a base classifier trained with manually annotated examples and refined with the automatically identified examples in the new videos. Experimental results demonstrate that despite variation of lighting conditions in videos our proposed method is able to adapt to the videos and remove shadows effectively. The sensitivity of shadow detection changes slightly with different confidence levels used in example selection for classifier retraining and high confidence level usually yields better performance with less retraining iterations.
Date: August 2015
Creator: Mohapatra, Deepankar
Object Type: Thesis or Dissertation
System: The UNT Digital Library
Algorithm Optimizations in Genomic Analysis Using Entropic Dissection (open access)

Algorithm Optimizations in Genomic Analysis Using Entropic Dissection

In recent years, the collection of genomic data has skyrocketed and databases of genomic data are growing at a faster rate than ever before. Although many computational methods have been developed to interpret these data, they tend to struggle to process the ever increasing file sizes that are being produced and fail to take advantage of the advances in multi-core processors by using parallel processing. In some instances, loss of accuracy has been a necessary trade off to allow faster computation of the data. This thesis discusses one such algorithm that has been developed and how changes were made to allow larger input file sizes and reduce the time required to achieve a result without sacrificing accuracy. An information entropy based algorithm was used as a basis to demonstrate these techniques. The algorithm dissects the distinctive patterns underlying genomic data efficiently requiring no a priori knowledge, and thus is applicable in a variety of biological research applications. This research describes how parallel processing and object-oriented programming techniques were used to process larger files in less time and achieve a more accurate result from the algorithm. Through object oriented techniques, the maximum allowable input file size was significantly increased from 200 …
Date: August 2015
Creator: Danks, Jacob R.
Object Type: Thesis or Dissertation
System: The UNT Digital Library
Integrity Verification of Applications on RADIUM Architecture (open access)

Integrity Verification of Applications on RADIUM Architecture

Trusted Computing capability has become ubiquitous these days, and it is being widely deployed into consumer devices as well as enterprise platforms. As the number of threats is increasing at an exponential rate, it is becoming a daunting task to secure the systems against them. In this context, the software integrity measurement at runtime with the support of trusted platforms can be a better security strategy. Trusted Computing devices like TPM secure the evidence of a breach or an attack. These devices remain tamper proof if the hardware platform is physically secured. This type of trusted security is crucial for forensic analysis in the aftermath of a breach. The advantages of trusted platforms can be further leveraged if they can be used wisely. RADIUM (Race-free on-demand Integrity Measurement Architecture) is one such architecture, which is built on the strength of TPM. RADIUM provides an asynchronous root of trust to overcome the TOC condition of DRTM. Even though the underlying architecture is trusted, attacks can still compromise applications during runtime by exploiting their vulnerabilities. I propose an application-level integrity measurement solution that fits into RADIUM, to expand the trusted computing capability to the application layer. This is based on the concept …
Date: August 2015
Creator: Tarigopula, Mohan Krishna
Object Type: Thesis or Dissertation
System: The UNT Digital Library
Radium: Secure Policy Engine in Hypervisor (open access)

Radium: Secure Policy Engine in Hypervisor

The basis of today’s security systems is the trust and confidence that the system will behave as expected and are in a known good trusted state. The trust is built from hardware and software elements that generates a chain of trust that originates from a trusted known entity. Leveraging hardware, software and a mandatory access control policy technology is needed to create a trusted measurement environment. Employing a control layer (hypervisor or microkernel) with the ability to enforce a fine grained access control policy with hyper call granularity across multiple guest virtual domains can ensure that any malicious environment to be contained. In my research, I propose the use of radium's Asynchronous Root of Trust Measurement (ARTM) capability incorporated with a secure mandatory access control policy engine that would mitigate the limitations of the current hardware TPM solutions. By employing ARTM we can leverage asynchronous use of boot, launch, and use with the hypervisor proving its state and the integrity of the secure policy. My solution is using Radium (Race free on demand integrity architecture) architecture that will allow a more detailed measurement of applications at run time with greater semantic knowledge of the measured environments. Radium incorporation of a …
Date: August 2015
Creator: Shah, Tawfiq M.
Object Type: Thesis or Dissertation
System: The UNT Digital Library
Unique Channel Email System (open access)

Unique Channel Email System

Email connects 85% of the world. This paper explores the pattern of information overload encountered by majority of email users and examine what steps key email providers are taking to combat the problem. Besides fighting spam, popular email providers offer very limited tools to reduce the amount of unwanted incoming email. Rather, there has been a trend to expand storage space and aid the organization of email. Storing email is very costly and harmful to the environment. Additionally, information overload can be detrimental to productivity. We propose a simple solution that results in drastic reduction of unwanted mail, also known as graymail.
Date: August 2015
Creator: Balakchiev, Milko
Object Type: Thesis or Dissertation
System: The UNT Digital Library
Towards Resistance Detection in Health Behavior Change Dialogue Systems (open access)

Towards Resistance Detection in Health Behavior Change Dialogue Systems

One of the challenges fairly common in motivational interviewing is patient resistance to health behavior change. Hence, automated dialog systems aimed at counseling patients need to be capable of detecting resistance and appropriately altering dialog. This thesis focusses primarily on the development of such a system for automatic identification of patient resistance to behavioral change. This enables the dialogue system to direct the discourse towards a more agreeable ground and helping the patient overcome the obstacles in his or her way to change. This thesis also proposes a dialogue system framework for health behavior change via natural language analysis and generation. The proposed framework facilitates automated motivational interviewing from clinical psychology and involves three broad stages: rapport building and health topic identification, assessment of the patient’s opinion about making a change, and developing a plan. Using this framework patients can be encouraged to reflect on the options available and choose the best for a healthier life.
Date: August 2015
Creator: Sarma, Bandita
Object Type: Thesis or Dissertation
System: The UNT Digital Library
Computational Methods for Discovering and Analyzing Causal Relationships in Health Data (open access)

Computational Methods for Discovering and Analyzing Causal Relationships in Health Data

Publicly available datasets in health science are often large and observational, in contrast to experimental datasets where a small number of data are collected in controlled experiments. Variables' causal relationships in the observational dataset are yet to be determined. However, there is a significant interest in health science to discover and analyze causal relationships from health data since identified causal relationships will greatly facilitate medical professionals to prevent diseases or to mitigate the negative effects of the disease. Recent advances in Computer Science, particularly in Bayesian networks, has initiated a renewed interest for causality research. Causal relationships can be possibly discovered through learning the network structures from data. However, the number of candidate graphs grows in a more than exponential rate with the increase of variables. Exact learning for obtaining the optimal structure is thus computationally infeasible in practice. As a result, heuristic approaches are imperative to alleviate the difficulty of computations. This research provides effective and efficient learning tools for local causal discoveries and novel methods of learning causal structures with a combination of background knowledge. Specifically in the direction of constraint based structural learning, polynomial-time algorithms for constructing causal structures are designed with first-order conditional independence. Algorithms of …
Date: August 2015
Creator: Liang, Yiheng
Object Type: Thesis or Dissertation
System: The UNT Digital Library
Framework for Evaluating Dynamic Memory Allocators Including a New Equivalence Class Based Cache-conscious Allocator (open access)

Framework for Evaluating Dynamic Memory Allocators Including a New Equivalence Class Based Cache-conscious Allocator

Software applications’ performance is hindered by a variety of factors, but most notably by the well-known CPU-memory speed gap (often known as the memory wall). This results in the CPU sitting idle waiting for data to be brought from memory to processor caches. The addressing used by caches cause non-uniform accesses to various cache sets. The non-uniformity is due to several reasons, including how different objects are accessed by the code and how the data objects are located in memory. Memory allocators determine where dynamically created objects are placed, thus defining addresses and their mapping to cache locations. It is important to evaluate how different allocators behave with respect to the localities of the created objects. Most allocators use a single attribute, the size, of an object in making allocation decisions. Additional attributes such as the placement with respect to other objects, or specific cache area may lead to better use of cache memories. In this dissertation, we proposed and implemented a framework that allows for the development and evaluation of new memory allocation techniques. At the root of the framework is a memory tracing tool called Gleipnir, which provides very detailed information about every memory access, and relates it …
Date: August 2013
Creator: Janjusic, Tomislav
Object Type: Thesis or Dissertation
System: The UNT Digital Library
Automated Real-time Objects Detection in Colonoscopy Videos for Quality Measurements (open access)

Automated Real-time Objects Detection in Colonoscopy Videos for Quality Measurements

The effectiveness of colonoscopy depends on the quality of the inspection of the colon. There was no automated measurement method to evaluate the quality of the inspection. This thesis addresses this issue by investigating an automated post-procedure quality measurement technique and proposing a novel approach automatically deciding a percentage of stool areas in images of digitized colonoscopy video files. It involves the classification of image pixels based on their color features using a new method of planes on RGB (red, green and blue) color space. The limitation of post-procedure quality measurement is that quality measurements are available long after the procedure was done and the patient was released. A better approach is to inform any sub-optimal inspection immediately so that the endoscopist can improve the quality in real-time during the procedure. This thesis also proposes an extension to post-procedure method to detect stool, bite-block, and blood regions in real-time using color features in HSV color space. These three objects play a major role in quality measurements in colonoscopy. The proposed method partitions very large positive examples of each of these objects into a number of groups. These groups are formed by taking intersection of positive examples with a hyper plane. …
Date: August 2013
Creator: Kumara, Muthukudage Jayantha
Object Type: Thesis or Dissertation
System: The UNT Digital Library
Detection of Temporal Events and Abnormal Images for Quality Analysis in Endoscopy Videos (open access)

Detection of Temporal Events and Abnormal Images for Quality Analysis in Endoscopy Videos

Recent reports suggest that measuring the objective quality is very essential towards the success of colonoscopy. Several quality indicators (i.e. metrics) proposed in recent studies are implemented in software systems that compute real-time quality scores for routine screening colonoscopy. Most quality metrics are derived based on various temporal events occurred during the colonoscopy procedure. The location of the phase boundary between the insertion and the withdrawal phases and the amount of circumferential inspection are two such important temporal events. These two temporal events can be determined by analyzing various camera motions of the colonoscope. This dissertation put forward a novel method to estimate X, Y and Z directional motions of the colonoscope using motion vector templates. Since abnormalities of a WCE or a colonoscopy video can be found in a small number of frames (around 5% out of total frames), it is very helpful if a computer system can decide whether a frame has any mucosal abnormalities. Also, the number of detected abnormal lesions during a procedure is used as a quality indicator. Majority of the existing abnormal detection methods focus on detecting only one type of abnormality or the overall accuracies are somewhat low if the method tries to …
Date: August 2013
Creator: Nawarathna, Ruwan D.
Object Type: Thesis or Dissertation
System: The UNT Digital Library
Design and Analysis of Novel Verifiable Voting Schemes (open access)

Design and Analysis of Novel Verifiable Voting Schemes

Free and fair elections are the basis for democracy, but conducting elections is not an easy task. Different groups of people are trying to influence the outcome of the election in their favor using the range of methods, from campaigning for a particular candidate to well-financed lobbying. Often the stakes are too high, and the methods are illegal. Two main properties of any voting scheme are the privacy of a voter’s choice and the integrity of the tally. Unfortunately, they are mutually exclusive. Integrity requires making elections transparent and auditable, but at the same time, we must preserve a voter’s privacy. It is always a trade-off between these two requirements. Current voting schemes favor privacy over auditability, and thus, they are vulnerable to voting fraud. I propose two novel voting systems that can achieve both privacy and verifiability. The first protocol is based on cryptographical primitives to ensure the integrity of the final tally and privacy of the voter. The second protocol is a simple paper-based voting scheme that achieves almost the same level of security without usage of cryptography.
Date: December 2013
Creator: Yestekov, Yernat
Object Type: Thesis or Dissertation
System: The UNT Digital Library
Real-time Rendering of Burning Objects in Video Games (open access)

Real-time Rendering of Burning Objects in Video Games

In recent years there has been growing interest in limitless realism in computer graphics applications. Among those, my foremost concentration falls into the complex physical simulations and modeling with diverse applications for the gaming industry. Different simulations have been virtually successful by replicating the details of physical process. As a result, some were strong enough to lure the user into believable virtual worlds that could destroy any sense of attendance. In this research, I focus on fire simulations and its deformation process towards various virtual objects. In most game engines model loading takes place at the beginning of the game or when the game is transitioning between levels. Game models are stored in large data structures. Since changing or adjusting a large data structure while the game is proceeding may adversely affect the performance of the game. Therefore, developers may choose to avoid procedural simulations to save resources and avoid interruptions on performance. I introduce a process to implement a real-time model deformation while maintaining performance. It is a challenging task to achieve high quality simulation while utilizing minimum resources to represent multiple events in timely manner. Especially in video games, this overwhelming criterion would be robust enough to sustain …
Date: August 2013
Creator: Amarasinghe, Dhanyu Eshaka
Object Type: Thesis or Dissertation
System: The UNT Digital Library
Simulating the Spread of Infectious Diseases in Heterogeneous Populations with Diverse Interactions Characteristics (open access)

Simulating the Spread of Infectious Diseases in Heterogeneous Populations with Diverse Interactions Characteristics

The spread of infectious diseases has been a public concern throughout human history. Historic recorded data has reported the severity of infectious disease epidemics in different ages. Ancient Greek physician Hippocrates was the first to analyze the correlation between diseases and their environment. Nowadays, health authorities are in charge of planning strategies that guarantee the welfare of citizens. The simulation of contagion scenarios contributes to the understanding of the epidemic behavior of diseases. Computational models facilitate the study of epidemics by integrating disease and population data to the simulation. The use of detailed demographic and geographic characteristics allows researchers to construct complex models that better resemble reality and the integration of these attributes permits us to understand the rules of interaction. The interaction of individuals with similar characteristics forms synthetic structures that depict clusters of interaction. The synthetic environments facilitate the study of the spread of infectious diseases in diverse scenarios. The characteristics of the population and the disease concurrently affect the local and global epidemic progression. Every cluster’ epidemic behavior constitutes the global epidemic for a clustered population. By understanding the correlation between structured populations and the spread of a disease, current dissertation research makes possible to identify risk …
Date: December 2013
Creator: Gomez-Lopez, Iris Nelly
Object Type: Thesis or Dissertation
System: The UNT Digital Library
Boosting for Learning From Imbalanced, Multiclass Data Sets (open access)

Boosting for Learning From Imbalanced, Multiclass Data Sets

In many real-world applications, it is common to have uneven number of examples among multiple classes. The data imbalance, however, usually complicates the learning process, especially for the minority classes, and results in deteriorated performance. Boosting methods were proposed to handle the imbalance problem. These methods need elongated training time and require diversity among the classifiers of the ensemble to achieve improved performance. Additionally, extending the boosting method to handle multi-class data sets is not straightforward. Examples of applications that suffer from imbalanced multi-class data can be found in face recognition, where tens of classes exist, and in capsule endoscopy, which suffers massive imbalance between the classes. This dissertation introduces RegBoost, a new boosting framework to address the imbalanced, multi-class problems. This method applies a weighted stratified sampling technique and incorporates a regularization term that accommodates multi-class data sets and automatically determines the error bound of each base classifier. The regularization parameter penalizes the classifier when it misclassifies instances that were correctly classified in the previous iteration. The parameter additionally reduces the bias towards majority classes. Experiments are conducted using 12 diverse data sets with moderate to high imbalance ratios. The results demonstrate superior performance of the proposed method compared …
Date: December 2013
Creator: Abouelenien, Mohamed
Object Type: Thesis or Dissertation
System: The UNT Digital Library
Scalable Next Generation Blockchains for Large Scale Complex Cyber-Physical Systems and Their Embedded Systems in Smart Cities (open access)

Scalable Next Generation Blockchains for Large Scale Complex Cyber-Physical Systems and Their Embedded Systems in Smart Cities

The original FlexiChain and its descendants are a revolutionary distributed ledger technology (DLT) for cyber-physical systems (CPS) and their embedded systems (ES). FlexiChain, a DLT implementation, uses cryptography, distributed ledgers, peer-to-peer communications, scalable networks, and consensus. FlexiChain facilitates data structure agreements. This thesis offers a Block Directed Acyclic Graph (BDAG) architecture to link blocks to their forerunners to speed up validation. These data blocks are securely linked. This dissertation introduces Proof of Rapid Authentication, a novel consensus algorithm. This innovative method uses a distributed file to safely store a unique identifier (UID) based on node attributes to verify two blocks faster. This study also addresses CPS hardware security. A system of interconnected, user-unique identifiers allows each block's history to be monitored. This maintains each transaction and the validators who checked the block to ensure trustworthiness and honesty. We constructed a digital version that stays in sync with the distributed ledger as all nodes are linked by a NodeChain. The ledger is distributed without compromising node autonomy. Moreover, FlexiChain Layer 0 distributed ledger is also introduced and can connect and validate Layer 1 blockchains. This project produced a DAG-based blockchain integration platform with hardware security. The results illustrate a practical technique …
Date: July 2023
Creator: Alkhodair, Ahmad Jamal M
Object Type: Thesis or Dissertation
System: The UNT Digital Library
Improving Communication and Collaboration Using Artificial Intelligence: An NLP-Enabled Pair Programming Collaborative-ITS Case Study (open access)

Improving Communication and Collaboration Using Artificial Intelligence: An NLP-Enabled Pair Programming Collaborative-ITS Case Study

This dissertation investigates computational models and methods to improve collaboration skills among students. The study targets pair programming, a popular collaborative learning practice in computer science education. This research led to the first machine learning models capable of detecting micromanagement, exclusive language, and other types of collaborative talk during pair programming. The investigation of computational models led to a novel method for adapting pretrained language models by first training them with a multi-task learning objective. I performed computational linguistic analysis of the types of interactions commonly seen in pair programming and obtained computationally tractable features to classify collaborative talk. In addition, I evaluated a novel metric utilized in evaluating the models in this dissertation. This metric is applicable in the areas of affective systems, formative feedback systems and the broader field of computer science. Lastly, I present a computational method, CollabAssist, for providing real-time feedback to improve collaboration. The empirical evaluation of CollabAssist demonstrated a statistically significant reduction in micromanagement during pair programming. Overall, this dissertation contributes to the development of better collaborative learning practices and facilitates greater student learning gains thereby improving students' computer science skills.
Date: July 2023
Creator: Ubani, Solomon
Object Type: Thesis or Dissertation
System: The UNT Digital Library