Country

An Investigation of Scale Factor in Deep Networks for Scene Recognition (open access)

An Investigation of Scale Factor in Deep Networks for Scene Recognition

Is there a significant difference in the design of deep networks for the tasks of classifying object-centric images and scenery images? How to design networks that extract the most representative features for scene recognition? To answer these questions, we design studies to examine the scales and richness of image features for scenery image recognition. Three methods are proposed that integrate the scale factor to the deep networks and reveal the fundamental network design strategies. In our first attempt to integrate scale factors into the deep network, we proposed a method that aggregates both the context and multi-scale object information of scene images by constructing a multi-scale pyramid. In our design, integration of object-centric multi-scale networks achieved a performance boost of 9.8%; integration of object- and scene-centric models obtained an accuracy improvement of 5.9% compared with single scene-centric models. We also exploit bringing the attention scheme to the deep network and proposed a Scale Attentive Network (SANet). The SANet streamlines the multi-scale scene recognition pipeline, learns comprehensive scene features at various scales and locations, addresses the inter-dependency among scales, and further assists feature re-calibration as well as the aggregation process. The proposed network achieved a Top-1 accuracy increase by 1.83% on …
Date: May 2022
Creator: Qiao, Zhinan
Object Type: Thesis or Dissertation
System: The UNT Digital Library
IoMT-Based Accurate Stress Monitoring for Smart Healthcare (open access)

IoMT-Based Accurate Stress Monitoring for Smart Healthcare

This research proposes Stress-Lysis, iLog and SaYoPillow to automatically detect and monitor the stress levels of a person. To self manage psychological stress in the framework of smart healthcare, a deep learning based novel system (Stress-Lysis) is proposed in this dissertation. The learning system is trained such that it monitors stress levels in a person through human body temperature, rate of motion and sweat during physical activity. The proposed deep learning system has been trained with a total of 26,000 samples per dataset and demonstrates accuracy as high as 99.7%. The collected data are transmitted and stored in the cloud, which can help in real time monitoring of a person's stress levels, thereby reducing the risk of death and expensive treatments. The proposed system has the ability to produce results with an overall accuracy of 98.3% to 99.7%, is simple to implement and its cost is moderate. Chronic stress, uncontrolled or unmonitored food consumption, and obesity are intricately connected, even involving certain neurological adaptations. In iLog we propose a system which can not only monitor but also create awareness for the user of how much food is too much. iLog provides information on the emotional state of a person along …
Date: May 2021
Creator: Rachakonda, Laavanya
Object Type: Thesis or Dissertation
System: The UNT Digital Library

Extracting Dimensions of Interpersonal Interactions and Relationships

People interact with each other through natural language to express feelings, thoughts, intentions, instructions etc. These interactions as a result form relationships. Besides names of relationships like siblings, spouse, friends etc., a number of dimensions (e.g. cooperative vs. competitive, temporary vs. enduring, equal vs. hierarchical etc.) can also be used to capture the underlying properties of interpersonal interactions and relationships. More fine-grained descriptors (e.g. angry, rude, nice, supportive etc.) can also be used to indicate the reasons or social-acts behind the dimension cooperative vs. competitive. The way people interact with others may also tell us about their personal traits, which in turn may be indicative of their probable success in their future. The works presented in the dissertation involve creating corpora with fine-grained descriptors of interactions and relationships. We also described experiments and their results that indicated that the processes of identifying the dimensions can be automated.
Date: August 2020
Creator: Rashid, Farzana
Object Type: Thesis or Dissertation
System: The UNT Digital Library

Advanced Stochastic Signal Processing and Computational Methods: Theories and Applications

Compressed sensing has been proposed as a computationally efficient method to estimate the finite-dimensional signals. The idea is to develop an undersampling operator that can sample the large but finite-dimensional sparse signals with a rate much below the required Nyquist rate. In other words, considering the sparsity level of the signal, the compressed sensing samples the signal with a rate proportional to the amount of information hidden in the signal. In this dissertation, first, we employ compressed sensing for physical layer signal processing of directional millimeter-wave communication. Second, we go through the theoretical aspect of compressed sensing by running a comprehensive theoretical analysis of compressed sensing to address two main unsolved problems, (1) continuous-extension compressed sensing in locally convex space and (2) computing the optimum subspace and its dimension using the idea of equivalent topologies using Köthe sequence. In the first part of this thesis, we employ compressed sensing to address various problems in directional millimeter-wave communication. In particular, we are focusing on stochastic characteristics of the underlying channel to characterize, detect, estimate, and track angular parameters of doubly directional millimeter-wave communication. For this purpose, we employ compressed sensing in combination with other stochastic methods such as Correlation Matrix Distance …
Date: August 2022
Creator: Robaei, Mohammadreza
Object Type: Thesis or Dissertation
System: The UNT Digital Library
HAR-Depth: A Novel Framework for Human Action Recognition Using Sequential Learning and Depth Estimated History Images (open access)

HAR-Depth: A Novel Framework for Human Action Recognition Using Sequential Learning and Depth Estimated History Images

This is the Accepted Manuscript version of an article that proposes HAR-Depth with sequential and shape learning along with the novel concept of depth history image (DHI) to address the challenges of Human action recognition (HAR). Results suggest that the proposed work of this paper performs better in terms of overall accuracy, kappa parameter and precision compared to the other state-of-the-art algorithms present in the earlier reported literature.
Date: August 24, 2020
Creator: Sahoo, Suraj Prakash; Ari, Samit; Mahapatra, Kamalakanta & Mohanty, Saraju P.
Object Type: Article
System: The UNT Digital Library

Secure and Decentralized Data Cooperatives via Reputation Systems and Blockchain

This dissertation focuses on a novel area of secure data management referred to as data cooperatives. A data cooperative solution promises its users better protection and control of their personal data as compared to the traditional way of their handling by the data collectors (such as governments, big data companies, and others). However, despite the many interesting benefits that the data cooperative approach tends to provide its users, it suffers from a few challenges hindering its development, adoption, and widespread use among data providers and consumers. To address these issues, we have divided this dissertation into two parts. In the first part, we identify the existing challenges and propose and implement a decentralized architecture built atop a blockchain system. Our solution leverages the inherent decentralized, tamper-resistant, and security properties of the blockchain. The implementation of our system was carried out on an existing blockchain test network, Ropsten, and our results show that blockchain is an efficient and scalable platform for the development of a decentralized data cooperative solution. In the second part of this work, we further addressed the existing challenges and the limitations of the implementation from the first part of our work. In particular, we addressed inclusivity---a core …
Date: December 2022
Creator: Salau, Abiola
Object Type: Thesis or Dissertation
System: The UNT Digital Library
Epileptic Seizure Detection and Control in the Internet of Medical Things (IoMT) Framework (open access)

Epileptic Seizure Detection and Control in the Internet of Medical Things (IoMT) Framework

Epilepsy affects up to 1% of the world's population and approximately 2.5 million people in the United States. A considerable portion (30%) of epilepsy patients are refractory to antiepileptic drugs (AEDs), and surgery can not be an effective candidate if the focus of the seizure is on the eloquent cortex. To overcome the problems with existing solutions, a notable portion of biomedical research is focused on developing an implantable or wearable system for automated seizure detection and control. Seizure detection algorithms based on signal rejection algorithms (SRA), deep neural networks (DNN), and neighborhood component analysis (NCA) have been proposed in the IoMT framework. The algorithms proposed in this work have been validated with both scalp and intracranial electroencephalography (EEG, icEEG), and demonstrate high classification accuracy, sensitivity, and specificity. The occurrence of seizure can be controlled by direct drug injection into the epileptogenic zone, which enhances the efficacy of the AEDs. Piezoelectric and electromagnetic micropumps have been explored for the use of a drug delivery unit, as they provide accurate drug flow and reduce power consumption. The reduction in power consumption as a result of minimal circuitry employed by the drug delivery system is making it suitable for practical biomedical applications. …
Date: May 2020
Creator: Sayeed, Md Abu
Object Type: Thesis or Dissertation
System: The UNT Digital Library
MyWear: A Novel Smart Garment for Automatic Continuous Vital Monitoring (open access)

MyWear: A Novel Smart Garment for Automatic Continuous Vital Monitoring

Accepted Manuscript version of an article presenting the design and development of a smart garment called MyWear that continuously monitors and collects physiological data. It can analyze muscle activity, stress levels, and heart rate variations and send all the data to the cloud. With a in-built alert system, it can notify the associated medical officials if necessary. The authors also propose a deep neural network model that classifies heartbeat data into abnormalities with 96.9% accuracy and 97.3% precision.
Date: June 3, 2021
Creator: Sethuraman, Sibi C.; Kompally, Pranav; Mohanty, Saraju P. & Choppali, Uma
Object Type: Article
System: The UNT Digital Library

Red Door: Firewall Based Access Control in ROS

ROS is a set of computer operating system framework designed for robot software development, and Red Door, a lightweight software firewall that serves the ROS, is intended to strengthen its security. ROS has many flaws in security, such as clear text transmission of data, no authentication mechanism, etc. Red Door can achieve identity verification and access control policy with a small performance loss, all without modifying the ROS source code, to ensure the availability and authentication of ROS applications to the greatest extent.
Date: December 2020
Creator: Shen, Ziyi
Object Type: Thesis or Dissertation
System: The UNT Digital Library

Encrypted Collaborative Editing Software

Cloud-based collaborative editors enable real-time document processing via remote connections. Their common application is to allow Internet users to collaboratively work on their documents stored in the cloud, even if these users are physically a world apart. However, this convenience comes at a cost in terms of user privacy. Hence, the growth of popularity of cloud computing application stipulates the growth in importance of cloud security. A major concern with the cloud is who has access to user data. In order to address this issue, various third-party services offer encryption mechanisms for protection of the user data in the case of insider attacks or data leakage. However, these services often only encrypt data-at-rest, leaving the data which is being processed potentially vulnerable. The purpose of this study is to propose a prototype software system that encrypts collaboratively edited data in real-time, preserving the user experience similar to that of, e.g., Google Docs.
Date: May 2020
Creator: Tran, Augustin
Object Type: Thesis or Dissertation
System: The UNT Digital Library
Improving Communication and Collaboration Using Artificial Intelligence: An NLP-Enabled Pair Programming Collaborative-ITS Case Study (open access)

Improving Communication and Collaboration Using Artificial Intelligence: An NLP-Enabled Pair Programming Collaborative-ITS Case Study

This dissertation investigates computational models and methods to improve collaboration skills among students. The study targets pair programming, a popular collaborative learning practice in computer science education. This research led to the first machine learning models capable of detecting micromanagement, exclusive language, and other types of collaborative talk during pair programming. The investigation of computational models led to a novel method for adapting pretrained language models by first training them with a multi-task learning objective. I performed computational linguistic analysis of the types of interactions commonly seen in pair programming and obtained computationally tractable features to classify collaborative talk. In addition, I evaluated a novel metric utilized in evaluating the models in this dissertation. This metric is applicable in the areas of affective systems, formative feedback systems and the broader field of computer science. Lastly, I present a computational method, CollabAssist, for providing real-time feedback to improve collaboration. The empirical evaluation of CollabAssist demonstrated a statistically significant reduction in micromanagement during pair programming. Overall, this dissertation contributes to the development of better collaborative learning practices and facilitates greater student learning gains thereby improving students' computer science skills.
Date: July 2023
Creator: Ubani, Solomon
Object Type: Thesis or Dissertation
System: The UNT Digital Library
sCrop: A Novel Device for Sustainable Automatic Disease Prediction, Crop Selection, and Irrigation in Internet-of-Agro-Things for Smart Agriculture (open access)

sCrop: A Novel Device for Sustainable Automatic Disease Prediction, Crop Selection, and Irrigation in Internet-of-Agro-Things for Smart Agriculture

Accepted Manuscript version of an article introducing the innovative idea of the Internet-of-Agro-Things (IoAT) with an explanation of the automatic detection of plant disease for the development of Agriculture Cyber-Physical System (ACPS). An accuracy of 99.24% is achieved by the proposed plant disease prediction framework.
Date: August 15, 2021
Creator: Udutalapally, Venkanna; Mohanty, Saraju P.; Pallagani, Vishal & Khandelwal, Vedant
Object Type: Article
System: The UNT Digital Library
Paradigm Shift from Vague Legal Contracts to Blockchain-Based Smart Contracts (open access)

Paradigm Shift from Vague Legal Contracts to Blockchain-Based Smart Contracts

In this dissertation, we address the problem of vagueness in traditional legal contracts by presenting novel methodologies that aid in the paradigm shift from traditional legal contracts to smart contracts. We discuss key enabling technologies that assist in converting the traditional natural language legal contract, which is full of vague words, phrases, and sentences to the blockchain-based precise smart contract, including metrics evaluation during our conversion experiment. To address the challenge of this contract-transformation process, we propose four novel proof-of-concept approaches that take vagueness and different possible interpretations into significant consideration, where we experiment with popular vendors' existing vague legal contracts. We show through experiments that our proposed methodologies are able to study the degree of vagueness in every interpretation and demonstrate which vendor's translated-smart contract can be more accurate, optimized, and have a lesser degree of vagueness. We also incorporated the method of fuzzy logic inside the blockchain-based smart contract, to successfully model the semantics of linguistic expressions. Our experiments and results show that the smart contract with the higher degrees of truth can be very complex technically but more accurate at the same time. By using fuzzy logic inside a smart contract, it becomes easier to solve the …
Date: July 2023
Creator: Upadhyay, Kritagya Raj
Object Type: Thesis or Dissertation
System: The UNT Digital Library

Integrating Multiple Deep Learning Models for Disaster Description in Low-Altitude Videos

Computer vision technologies are rapidly improving and becoming more important in disaster response. The majority of disaster description techniques now focus either on identify objects or categorize disasters. In this study, we trained multiple deep neural networks on low-altitude imagery with highly imbalanced and noisy labels. We utilize labeled images from the LADI dataset to formulate a solution for general problem in disaster classification and object detection. Our research integrated and developed multiple deep learning models that does the object detection task as well as the disaster scene classification task. Our solution is competitive in the TRECVID Disaster Scene Description and Indexing (DSDI) task, demonstrating that it is comparable to other suggested approaches in retrieving disaster-related video clips.
Date: December 2022
Creator: Wang, Haili
Object Type: Thesis or Dissertation
System: The UNT Digital Library
SIMON: A Domain-Agnostic Framework for Secure Design and Validation of Cyber Physical Systems (open access)

SIMON: A Domain-Agnostic Framework for Secure Design and Validation of Cyber Physical Systems

Cyber physical systems (CPS) are an integration of computational and physical processes, where the cyber components monitor and control physical processes. Cyber-attacks largely target the cyber components with the intention of disrupting the functionality of the components in the physical domain. This dissertation explores the role of semantic inference in understanding such attacks and building resilient CPS systems. To that end, we present SIMON, an ontological design and verification framework that captures the intricate relationship(s) between cyber and physical components in CPS by leveraging several standard ontologies and extending the NIST CPS framework for the purpose of eliciting trustworthy requirements, assigning responsibilities and roles to CPS functionalities, and validating that the trustworthy requirements are met by the designed system. We demonstrate the capabilities of SIMON using two case studies – a vehicle to infrastructure (V2I) safety application and an additive manufacturing (AM) printer. In addition, we also present a taxonomy to capture threat feeds specific to the AM domain.
Date: December 2021
Creator: Yanambaka Venkata, Rohith
Object Type: Thesis or Dissertation
System: The UNT Digital Library
A Method of Combining GANs to Improve the Accuracy of Object Detection on Autonomous Vehicles (open access)

A Method of Combining GANs to Improve the Accuracy of Object Detection on Autonomous Vehicles

As the technology in the field of computer vision becomes more and more mature, the autonomous vehicles have achieved rapid developments in recent years. However, the object detection and classification tasks of autonomous vehicles which are based on cameras may face problems when the vehicle is driving at a relatively high speed. One is that the camera will collect blurred photos when driving at high speed which may affect the accuracy of deep neural networks. The other is that small objects far away from the vehicle are difficult to be recognized by networks. In this paper, we present a method to combine two kinds of GANs to solve these problems. We choose DeblurGAN as the base model to remove blur in images. SRGAN is another GAN we choose for solving small object detection problems. Due to the total time of these two are too long, we still do the model compression on it to make it lighter. Then we use the Yolov4 to do the object detection. Finally we do the evaluation of the whole model architecture and proposed a model version 2 based on DeblurGAN and ESPCN which is faster than previous one but the accuracy may be lower.
Date: December 2020
Creator: Ye, Fanjie
Object Type: Thesis or Dissertation
System: The UNT Digital Library
Using Blockchain to Ensure Reputation Credibility in Decentralized Review Management (open access)

Using Blockchain to Ensure Reputation Credibility in Decentralized Review Management

In recent years, there have been incidents which decreased people's trust in some organizations and authorities responsible for ratings and accreditation. For a few prominent examples, there was a security breach at Equifax (2017), misconduct was found in the Standard & Poor's Ratings Services (2015), and the Accrediting Council for Independent Colleges and Schools (2022) validated some of the low-performing schools as delivering higher standards than they actually were. A natural solution to these types of issues is to decentralize the relevant trust management processes using blockchain technologies. The research problems which are tackled in this thesis consider the issue of trust in reputation for assessment and review credibility at different angles, in the context of blockchain applications. We first explored the following questions. How can we trust courses in one college to provide students with the type and level of knowledge which is needed in a specific workplace? Micro-accreditation on a blockchain was our solution, including using a peer-review system to determine the rigor of a course (through a consensus). Rigor is the level of difficulty in regard to a student's expected level of knowledge. Currently, we make assumptions about the quality and rigor of what is learned, but …
Date: December 2023
Creator: Zaccagni, Zachary James
Object Type: Thesis or Dissertation
System: The UNT Digital Library

Multi-Source Large Scale Bike Demand Prediction

Current works of bike demand prediction mainly focus on cluster level and perform poorly on predicting demands of a single station. In the first task, we introduce a contextual based bike demand prediction model, which predicts bike demands for per station by combining spatio-temporal network and environment contexts synergistically. Furthermore, since people's movement information is an important factor, which influences the bike demands of each station. To have a better understanding of people's movements, we need to analyze the relationship between different places. In the second task, we propose an origin-destination model to learn place representations by using large scale movement data. Then based on the people's movement information, we incorporate the place embedding into our bike demand prediction model, which is built by using multi-source large scale datasets: New York Citi bike data, New York taxi trip records, and New York POI data. Finally, as deep learning methods have been successfully applied to many fields such as image recognition and natural language processing, it inspires us to incorporate the complex deep learning method into the bike demand prediction problem. So in this task, we propose a deep spatial-temporal (DST) model, which contains three major components: spatial dependencies, temporal dependencies, …
Date: May 2020
Creator: Zhou, Yang
Object Type: Thesis or Dissertation
System: The UNT Digital Library