Understanding and Addressing Accessibility Barriers Faced by People with Visual Impairments on Block-Based Programming Environments

There is an increased use of block-based programming environments in K-12 education and computing outreach activities to introduce novices to programming and computational thinking skills. However, despite their appealing design that allows students to focus on concepts rather than syntax, block-based programming by design is inaccessible to people with visual impairments and people who cannot use the mouse. In addition to this inaccessibility, little is known about the instructional experiences of students with visual impairments on current block-based programming environments. This dissertation addresses this gap by (1) investigating the challenges that students with visual impairments face on current block-based programming environments and (2) exploring ways in which we can use the keyboard and the screen reader to create block-based code. Through formal survey and interview studies with teachers of students with visual impairments and students with visual impairments, we identify several challenges faced by students with visual impairments on block-based programming environments. Using the knowledge of these challenges and building on prior work, we explore how to leverage the keyboard and the screen reader to improve the accessibility of block-based programming environments through a prototype of an accessible block-based programming library. In this dissertation, our empirical evaluations demonstrate that people …
Date: December 2022
Creator: Mountapmbeme, Aboubakar
System: The UNT Digital Library

Understanding and Reasoning with Negation

In this dissertation, I start with an analysis of negation in eleven benchmark corpora covering six Natural Language Understanding (NLU) tasks. With a thorough investigation, I first show that (a) these benchmarks contain fewer negations compared to general-purpose English and (b) the few negations they contain are often unimportant. Further, my empirical studies demonstrate that state-of-the-art transformers trained using these corpora obtain substantially worse results with the instances that contain negation, especially if the negations are important. Second, I investigate whether translating negation is also an issue for modern machine translation (MT) systems. My studies find that indeed the presence of negation can significantly impact translation quality, in some cases resulting in reductions of over 60%. In light of these findings, I investigate strategies to better understand the semantics of negation. I start with identifying the focus of negation. I develop a neural model that takes into account the scope of negation, context from neighboring sentences, or both. My best proposed system obtains an accuracy improvement of 7.4% over prior work. Further, I analyze the main error categories of the systems through a detailed error analysis. Next, I explore more practical ways to understand the semantics of negation. I consider …
Date: December 2022
Creator: Hossain, Md Mosharaf
System: The UNT Digital Library

Secure and Decentralized Data Cooperatives via Reputation Systems and Blockchain

This dissertation focuses on a novel area of secure data management referred to as data cooperatives. A data cooperative solution promises its users better protection and control of their personal data as compared to the traditional way of their handling by the data collectors (such as governments, big data companies, and others). However, despite the many interesting benefits that the data cooperative approach tends to provide its users, it suffers from a few challenges hindering its development, adoption, and widespread use among data providers and consumers. To address these issues, we have divided this dissertation into two parts. In the first part, we identify the existing challenges and propose and implement a decentralized architecture built atop a blockchain system. Our solution leverages the inherent decentralized, tamper-resistant, and security properties of the blockchain. The implementation of our system was carried out on an existing blockchain test network, Ropsten, and our results show that blockchain is an efficient and scalable platform for the development of a decentralized data cooperative solution. In the second part of this work, we further addressed the existing challenges and the limitations of the implementation from the first part of our work. In particular, we addressed inclusivity---a core …
Date: December 2022
Creator: Salau, Abiola
System: The UNT Digital Library

Registration of Point Sets with Large and Uneven Non-Rigid Deformation

Non-rigid point set registration of significantly uneven deformations is a challenging problem for many applications such as pose estimation, three-dimensional object reconstruction, human movement tracking. In this dissertation, we present a novel probabilistic non-rigid registration method to align point sets with significantly uneven deformations by enforcing constraints from corresponding key points and preserving local neighborhood structures. The registration method is treated as a density estimation problem. Incorporating correspondence among key points regulates the optimization process for large, uneven deformations. In addition, by leveraging neighborhood embedding using Stochastic Neighbor Embedding (SNE) as well as an alternative means based on Locally Linear Embedding (LLE), our method penalizes the incoherent transformation and hence preserves the local structure of point sets. Also, our method detects key points in the point sets based on geodesic distance. Correspondences are established using a new cluster-based, region-aware feature descriptor. This feature descriptor encodes the association of a cluster to the left-right (symmetry) or upper-lower regions of the point sets. We conducted comparison studies using public point sets and our Human point sets. Our experimental results demonstrate that our proposed method successfully reduced the registration error by at least 42.2% in contrast to the state-of-the-art method. Especially, our method …
Date: December 2022
Creator: Maharjan, Amar Man
System: The UNT Digital Library
Machine Learning Methods for Data Quality Aspects in Edge Computing Platforms (open access)

Machine Learning Methods for Data Quality Aspects in Edge Computing Platforms

In this research, three aspects of data quality with regard to artifical intelligence (AI) have been investigated: detection of misleading fake data, especially deepfakes, data scarcity, and data insufficiency, especially how much training data is required for an AI application. Different application domains where the selected aspects pose issues have been chosen. To address the issues of data privacy, security, and regulation, these solutions are targeted for edge devices. In Chapter 3, two solutions have been proposed that aim to preempt such misleading deepfake videos and images on social media. These solutions are deployable at edge devices. In Chapter 4, a deepfake resilient digital ID system has been described. Another data quality aspect, data scarcity, has been addressed in Chapter 5. One of such agricultural problems is estimating crop damage due to natural disasters. Data insufficiency is another aspect of data quality. The amount of data required to achieve acceptable accuracy in a machine learning (ML) model has been studied in Chapter 6. As the data scarcity problem is studied in the agriculture domain, a similar scenario—plant disease detection and damage estimation—has been chosen for this verification. This research aims to provide ML or deep learning (DL)-based methods to solve …
Date: December 2022
Creator: Mitra, Alakananda
System: The UNT Digital Library
Reliability and Throughput Improvement in Vehicular Communication by Using 5G Technologies (open access)

Reliability and Throughput Improvement in Vehicular Communication by Using 5G Technologies

The vehicular community is moving towards a whole new paradigm with the advancement of new technology. Vehicular communication not only supports safety services but also provides non-safety services like navigation support, toll collection, web browsing, media streaming, etc. The existing communication frameworks like Dedicated Short Range Communication (DSRC) and Cellular V2X (C-V2X) might not meet the required capacity in the coming days. So, the vehicular community needs to adopt new technologies and upgrade the existing communication frameworks so that it can fulfill the desired expectations. Therefore, an increment in reliability and data rate is required. Multiple Input Multiple Output (MIMO), 5G New Radio, Low Density Parity Check (LDPC) Code, and Massive MIMO signal detection and equalization algorithms are the latest addition to the 5G wireless communication domain. These technologies have the potential to make the existing V2X communication framework more robust. As a result, more reliability and throughput can be achieved. This work demonstrates these technologies' compatibility and positive impact on existing V2X communication standard.
Date: December 2022
Creator: Dey, Utpal-Kumar
System: The UNT Digital Library

Integrating Multiple Deep Learning Models for Disaster Description in Low-Altitude Videos

Computer vision technologies are rapidly improving and becoming more important in disaster response. The majority of disaster description techniques now focus either on identify objects or categorize disasters. In this study, we trained multiple deep neural networks on low-altitude imagery with highly imbalanced and noisy labels. We utilize labeled images from the LADI dataset to formulate a solution for general problem in disaster classification and object detection. Our research integrated and developed multiple deep learning models that does the object detection task as well as the disaster scene classification task. Our solution is competitive in the TRECVID Disaster Scene Description and Indexing (DSDI) task, demonstrating that it is comparable to other suggested approaches in retrieving disaster-related video clips.
Date: December 2022
Creator: Wang, Haili
System: The UNT Digital Library