Traffic Forecasting Applications Using Crowdsourced Traffic Reports and Deep Learning (open access)

Traffic Forecasting Applications Using Crowdsourced Traffic Reports and Deep Learning

Intelligent transportation systems (ITS) are essential tools for traffic planning, analysis, and forecasting that can utilize the huge amount of traffic data available nowadays. In this work, we aggregated detailed traffic flow sensor data, Waze reports, OpenStreetMap (OSM) features, and weather data, from California Bay Area for 6 months. Using that data, we studied three novel ITS applications using convolutional neural networks (CNNs) and recurrent neural networks (RNNs). The first experiment is an analysis of the relation between roadway shapes and accident occurrence, where results show that the speed limit and number of lanes are significant predictors for major accidents on highways. The second experiment presents a novel method for forecasting congestion severity using crowdsourced data only (Waze, OSM, and weather), without the need for traffic sensor data. The third experiment studies the improvement of traffic flow forecasting using accidents, number of lanes, weather, and time-related features, where results show significant performance improvements when the additional features where used.
Date: May 2020
Creator: Alammari, Ali
Object Type: Thesis or Dissertation
System: The UNT Digital Library

Frameworks for Attribute-Based Access Control (ABAC) Policy Engineering

In this disseration we propose semi-automated top-down policy engineering approaches for attribute-based access control (ABAC) development. Further, we propose a hybrid ABAC policy engineering approach to combine the benefits and address the shortcomings of both top-down and bottom-up approaches. In particular, we propose three frameworks: (i) ABAC attributes extraction, (ii) ABAC constraints extraction, and (iii) hybrid ABAC policy engineering. Attributes extraction framework comprises of five modules that operate together to extract attributes values from natural language access control policies (NLACPs); map the extracted values to attribute keys; and assign each key-value pair to an appropriate entity. For ABAC constraints extraction framework, we design a two-phase process to extract ABAC constraints from NLACPs. The process begins with the identification phase which focuses on identifying the right boundary of constraint expressions. Next is the normalization phase, that aims at extracting the actual elements that pose a constraint. On the other hand, our hybrid ABAC policy engineering framework consists of 5 modules. This framework combines top-down and bottom-up policy engineering techniques to overcome the shortcomings of both approaches and to generate policies that are more intuitive and relevant to actual organization policies. With this, we believe that our work takes essential steps towards …
Date: August 2020
Creator: Alohaly, Manar
Object Type: Thesis or Dissertation
System: The UNT Digital Library

Optimization of Massive MIMO Systems for 5G Networks

In the first part of the dissertation, we provide an extensive overview of sub-6 GHz wireless access technology known as massive multiple-input multiple-output (MIMO) systems, highlighting its benefits, deployment challenges, and the key enabling technologies envisaged for 5G networks. We investigate the fundamental issues that degrade the performance of massive MIMO systems such as pilot contamination, precoding, user scheduling, and signal detection. In the second part, we optimize the performance of the massive MIMO system by proposing several algorithms, system designs, and hardware architectures. To mitigate the effect of pilot contamination, we propose a pilot reuse factor scheme based on the user environment and the number of active users. The results through simulations show that the proposed scheme ensures the system always operates at maximal spectral efficiency and achieves higher throughput. To address the user scheduling problem, we propose two user scheduling algorithms bases upon the measured channel gain. The simulation results show that our proposed user scheduling algorithms achieve better error performance, improve sum capacity and throughput, and guarantee fairness among the users. To address the uplink signal detection challenge in the massive MIMO systems, we propose four algorithms and their system designs. We show through simulations that the …
Date: August 2020
Creator: Chataut, Robin
Object Type: Thesis or Dissertation
System: The UNT Digital Library
BC Framework for CAV Edge Computing (open access)

BC Framework for CAV Edge Computing

Edge computing and CAV (Connected Autonomous Vehicle) fields can work as a team. With the short latency and high responsiveness of edge computing, it is a better fit than cloud computing in the CAV field. Moreover, containerized applications are getting rid of the annoying procedures for setting the required environment. So that deployment of applications on new machines is much more user-friendly than before. Therefore, this paper proposes a framework developed for the CAV edge computing scenario. This framework consists of various programs written in different languages. The framework uses Docker technology to containerize these applications so that the deployment could be simple and easy. This framework consists of two parts. One is for the vehicle on-board unit, which exposes data to the closest edge device and receives the output generated by the edge device. Another is for the edge device, which is responsible for collecting and processing big load of data and broadcasting output to vehicles. So the vehicle does not need to perform the heavyweight tasks that could drain up the limited power.
Date: May 2020
Creator: Chen, Haidi
Object Type: Thesis or Dissertation
System: The UNT Digital Library

Cooperative Perception for Connected Autonomous Vehicle Edge Computing System

This dissertation first conducts a study on raw-data level cooperative perception for enhancing the detection ability of self-driving systems for connected autonomous vehicles (CAVs). A LiDAR (Light Detection and Ranging sensor) point cloud-based 3D object detection method is deployed to enhance detection performance by expanding the effective sensing area, capturing critical information in multiple scenarios and improving detection accuracy. In addition, a point cloud feature based cooperative perception framework is proposed on edge computing system for CAVs. This dissertation also uses the features' intrinsically small size to achieve real-time edge computing, without running the risk of congesting the network. In order to distinguish small sized objects such as pedestrian and cyclist in 3D data, an end-to-end multi-sensor fusion model is developed to implement 3D object detection from multi-sensor data. Experiments show that by solving multiple perception on camera and LiDAR jointly, the detection model can leverage the advantages from high resolution image and physical world LiDAR mapping data, which leads the KITTI benchmark on 3D object detection. At last, an application of cooperative perception is deployed on edge to heal the live map for autonomous vehicles. Through 3D reconstruction and multi-sensor fusion detection, experiments on real-world dataset demonstrate that a …
Date: August 2020
Creator: Chen, Qi
Object Type: Thesis or Dissertation
System: The UNT Digital Library
Extracting Possessions and Their Attributes (open access)

Extracting Possessions and Their Attributes

Possession is an asymmetric semantic relation between two entities, where one entity (the possessee) belongs to the other entity (the possessor). Automatically extracting possessions are useful in identifying skills, recommender systems and in natural language understanding. Possessions can be found in different communication modalities including text, images, videos, and audios. In this dissertation, I elaborate on the techniques I used to extract possessions. I begin with extracting possessions at the sentence level including the type and temporal anchors. Then, I extract the duration of possession and co-possessions (if multiple possessors possess the same entity). Next, I extract possessions from an entire Wikipedia article capturing the change of possessors over time. I extract possessions from social media including both text and images. Finally, I also present dense annotations generating possession timelines. I present separate datasets, detailed corpus analysis, and machine learning models for each task described above.
Date: May 2020
Creator: Chinnappa, Dhivya Infant
Object Type: Thesis or Dissertation
System: The UNT Digital Library
Privacy Preserving Machine Learning as a Service (open access)

Privacy Preserving Machine Learning as a Service

Machine learning algorithms based on neural networks have achieved remarkable results and are being extensively used in different domains. However, the machine learning algorithms requires access to raw data which is often privacy sensitive. To address this issue, we develop new techniques to provide solutions for running deep neural networks over encrypted data. In this paper, we develop new techniques to adopt deep neural networks within the practical limitation of current homomorphic encryption schemes. We focus on training and classification of the well-known neural networks and convolutional neural networks. First, we design methods for approximation of the activation functions commonly used in CNNs (i.e. ReLU, Sigmoid, and Tanh) with low degree polynomials which is essential for efficient homomorphic encryption schemes. Then, we train neural networks with the approximation polynomials instead of original activation functions and analyze the performance of the models. Finally, we implement neural networks and convolutional neural networks over encrypted data and measure performance of the models.
Date: May 2020
Creator: Hesamifard, Ehsan
Object Type: Thesis or Dissertation
System: The UNT Digital Library
A Study on Usability of Mobile Software Targeted at Elderly People in China (open access)

A Study on Usability of Mobile Software Targeted at Elderly People in China

With the rapid development of mobile device technology, smartphones are now not only the tool for young people but also for elderly people. However, the complicated steps of interacting with smartphones are stopping them from having a good user experience. One of the reasons is that application designers do not take consideration of the user group of elderly people. Our pilot survey shows that most elderly people lack the skills required to use a smartphone without obstacles, like typing. We also conducted an experiment with 8 participants that targeting on the usability of a daily used application, Contact List (CL), and based on a Chinese language system. We developed an android application that proposed a new method of showing the contact list according to the language usage of Chinese for this study. By asking participants to finish the same tasks on the traditional CL applications on their phones or on our application and observing their operations, we obtained useful feedback in terms of usability issues. Our experiment also tried to find out whether the method we proposed in the new application can lead to a better user experience for elderly people.
Date: May 2020
Creator: Jiang, Jingfu
Object Type: Thesis or Dissertation
System: The UNT Digital Library
Managing Access during Employee Separation using Blockchain Technology (open access)

Managing Access during Employee Separation using Blockchain Technology

On-boarding refers to bringing in an employee to a company and granting access to new hires. However, a person may go through different stages of employment, hold different jobs by the same employer and have different levels of information access during the employment duration. A shared services organization may have either limited or wide-spread access within certain groups. Off-boarding implies the removal of access of information or physical devices such as keys, computers or mobile devices when the employee leaves. Off-boarding is the management of the separation an employee from an institution. Many organizations use different steps that constitute the off-boarding process. Incomplete tracking of an employee's access is a security risk and can lead to unintended exposure of company information and assets. Blockchain technology combines blocks of information together using a cryptographic algorithm based on the existing previous block and is verified by the peers in the blockchain network. This process creates an immutable record of employee system access providing an audit trail of access for any point in time to ensure that all access permissions can be removed once employment ends. This project proposes using blockchain technology to consolidate information across disparate groups, and to automate access removal …
Date: May 2020
Creator: Mears, Paula Faye
Object Type: Thesis or Dissertation
System: The UNT Digital Library

Combinatorial-Based Testing Strategies for Mobile Application Testing

This work introduces three new coverage criteria based on combinatorial-based event and element sequences that occur in the mobile environment. The novel combinatorial-based criteria are used to reduce, prioritize, and generate test suites for mobile applications. The combinatorial-based criteria include unique coverage of events and elements with different respects to ordering. For instance, consider the coverage of a pair of events, e1 and e2. The least strict criterion, Combinatorial Coverage (CCov), counts the combination of these two events in a test case without respect to the order in which the events occur. That is, the combination (e1, e2) is the same as (e2, e1). The second criterion, Sequence-Based Combinatorial Coverage (SCov), considers the order of occurrence within a test case. Sequences (e1, ..., e2) and (e2,..., e1) are different sequences. The third and strictest criterion is Consecutive-Sequence Combinatorial Coverage (CSCov), which counts adjacent sequences of consecutive pairs. The sequence (e1, e2) is only counted if e1 immediately occurs before e2. The first contribution uses the novel combinatorial-based criteria for the purpose of test suite reduction. Empirical studies reveal that the criteria, when used with event sequences and sequences of size t=2, reduce the test suites by 22.8%-61.3% while the reduced …
Date: December 2020
Creator: Michaels, Ryan P.
Object Type: Thesis or Dissertation
System: The UNT Digital Library

Determining Event Outcomes from Social Media

An event is something that happens at a time and location. Events include major life events such as graduating college or getting married, and also simple day-to-day activities such as commuting to work or eating lunch. Most work on event extraction detects events and the entities involved in events. For example, cooking events will usually involve a cook, some utensils and appliances, and a final product. In this work, we target the task of determining whether events result in their expected outcomes. Specifically, we target cooking and baking events, and characterize event outcomes into two categories. First, we distinguish whether something edible resulted from the event. Second, if something edible resulted, we distinguish between perfect, partial and alternative outcomes. The main contributions of this thesis are a corpus of 4,000 tweets annotated with event outcome information and experimental results showing that the task can be automated. The corpus includes tweets that have only text as well as tweets that have text and an image.
Date: May 2020
Creator: Murugan, Srikala
Object Type: Thesis or Dissertation
System: The UNT Digital Library

A Top-Down Policy Engineering Framework for Attribute-Based Access Control

The purpose of this study is to propose a top-down policy engineering framework for attribute-based access control (ABAC) that aims to automatically extract ACPs from requirement specifications documents, and then, using the extracted policies, build or update an ABAC model. We specify a procedure that consists of three main components: 1) ACP sentence identification, 2) policy element extraction, and 3) ABAC model creation and update. ACP sentence identification processes unrestricted natural language documents and identify the sentences that carry ACP content. We propose and compare three different methodologies from different disciplines, namely deep recurrent neural networks (RNN-based), biological immune system (BIS-based), and a combination of multiple natural language processing techniques (PMI-based) in order to identify the proper methodology for extracting ACP sentences from irrelevant text. Our evaluation results improve the state-of-the-art by a margin of 5% F1-Measure. To aid future research, we also introduce a new dataset that includes 5000 sentences from real-world policy documents. ABAC policy extraction extracts ACP elements such as subject, object, and action from the identified ACPs. We use semantic roles and correctly identify ACP elements with an average F1 score of 75%, which bests the previous work by 15%. Furthermore, as SRL tools are often …
Date: May 2020
Creator: Narouei, Masoud
Object Type: Thesis or Dissertation
System: The UNT Digital Library
Kriging Methods to Exploit Spatial Correlations of EEG Signals for Fast and Accurate Seizure Detection in the IoMT (open access)

Kriging Methods to Exploit Spatial Correlations of EEG Signals for Fast and Accurate Seizure Detection in the IoMT

Epileptic seizure presents a formidable threat to the life of its sufferers, leaving them unconscious within seconds of its onset. Having a mortality rate that is at least twice that of the general population, it is a true cause for concern which has gained ample attention from various research communities. About 800 million people in the world will have at least one seizure experience in their lifespan. Injuries sustained during a seizure crisis are one of the leading causes of death in epilepsy. These can be prevented by an early detection of seizure accompanied by a timely intervention mechanism. The research presented in this dissertation explores Kriging methods to exploit spatial correlations of electroencephalogram (EEG) Signals from the brain, for fast and accurate seizure detection in the Internet of Medical Things (IoMT) using edge computing paradigms, by modeling the brain as a three-dimensional spatial object, similar to a geographical panorama. This dissertation proposes basic, hierarchical and distributed Kriging models, with a deep neural network (DNN) wrapper in some instances. Experimental results from the models are highly promising for real-time seizure detection, with excellent performance in seizure detection latency and training time, as well as accuracy, sensitivity and specificity which compare …
Date: August 2020
Creator: Olokodana, Ibrahim Latunde
Object Type: Thesis or Dissertation
System: The UNT Digital Library
Building Reliable and Cost-Effective Storage Systems for High-Performance Computing Datacenters (open access)

Building Reliable and Cost-Effective Storage Systems for High-Performance Computing Datacenters

In this dissertation, I first incorporate declustered redundant array of independent disks (RAID) technology in the existing system by maximizing the aggregated recovery I/O and accelerating post-failure remediation. Our analytical model affirms the accelerated data recovery stage significantly improves storage reliability. Then I present a proactive data protection framework that augments storage availability and reliability. It utilizes the failure prediction methods to efficiently rescue data on drives before failures occur, which significantly reduces the storage downtime and lowers the risk of nested failures. Finally, I investigate how an active storage system enables energy-efficient computing. I explore an emerging storage device named Ethernet drive to offload data-intensive workloads from the host to drives and process the data on drives. It not only minimizes data movement and power usage, but also enhances data availability and storage scalability. In summary, my dissertation research provides intelligence at the drive, storage node, and system levels to tackle the rising reliability challenge in modern HPC datacenters. The results indicate that this novel storage paradigm cost-effectively improves storage scalability, availability, and reliability.
Date: August 2020
Creator: Qiao, Zhi
Object Type: Thesis or Dissertation
System: The UNT Digital Library

Extracting Dimensions of Interpersonal Interactions and Relationships

People interact with each other through natural language to express feelings, thoughts, intentions, instructions etc. These interactions as a result form relationships. Besides names of relationships like siblings, spouse, friends etc., a number of dimensions (e.g. cooperative vs. competitive, temporary vs. enduring, equal vs. hierarchical etc.) can also be used to capture the underlying properties of interpersonal interactions and relationships. More fine-grained descriptors (e.g. angry, rude, nice, supportive etc.) can also be used to indicate the reasons or social-acts behind the dimension cooperative vs. competitive. The way people interact with others may also tell us about their personal traits, which in turn may be indicative of their probable success in their future. The works presented in the dissertation involve creating corpora with fine-grained descriptors of interactions and relationships. We also described experiments and their results that indicated that the processes of identifying the dimensions can be automated.
Date: August 2020
Creator: Rashid, Farzana
Object Type: Thesis or Dissertation
System: The UNT Digital Library
HAR-Depth: A Novel Framework for Human Action Recognition Using Sequential Learning and Depth Estimated History Images (open access)

HAR-Depth: A Novel Framework for Human Action Recognition Using Sequential Learning and Depth Estimated History Images

This is the Accepted Manuscript version of an article that proposes HAR-Depth with sequential and shape learning along with the novel concept of depth history image (DHI) to address the challenges of Human action recognition (HAR). Results suggest that the proposed work of this paper performs better in terms of overall accuracy, kappa parameter and precision compared to the other state-of-the-art algorithms present in the earlier reported literature.
Date: August 24, 2020
Creator: Sahoo, Suraj Prakash; Ari, Samit; Mahapatra, Kamalakanta & Mohanty, Saraju P.
Object Type: Article
System: The UNT Digital Library
Epileptic Seizure Detection and Control in the Internet of Medical Things (IoMT) Framework (open access)

Epileptic Seizure Detection and Control in the Internet of Medical Things (IoMT) Framework

Epilepsy affects up to 1% of the world's population and approximately 2.5 million people in the United States. A considerable portion (30%) of epilepsy patients are refractory to antiepileptic drugs (AEDs), and surgery can not be an effective candidate if the focus of the seizure is on the eloquent cortex. To overcome the problems with existing solutions, a notable portion of biomedical research is focused on developing an implantable or wearable system for automated seizure detection and control. Seizure detection algorithms based on signal rejection algorithms (SRA), deep neural networks (DNN), and neighborhood component analysis (NCA) have been proposed in the IoMT framework. The algorithms proposed in this work have been validated with both scalp and intracranial electroencephalography (EEG, icEEG), and demonstrate high classification accuracy, sensitivity, and specificity. The occurrence of seizure can be controlled by direct drug injection into the epileptogenic zone, which enhances the efficacy of the AEDs. Piezoelectric and electromagnetic micropumps have been explored for the use of a drug delivery unit, as they provide accurate drug flow and reduce power consumption. The reduction in power consumption as a result of minimal circuitry employed by the drug delivery system is making it suitable for practical biomedical applications. …
Date: May 2020
Creator: Sayeed, Md Abu
Object Type: Thesis or Dissertation
System: The UNT Digital Library

Red Door: Firewall Based Access Control in ROS

ROS is a set of computer operating system framework designed for robot software development, and Red Door, a lightweight software firewall that serves the ROS, is intended to strengthen its security. ROS has many flaws in security, such as clear text transmission of data, no authentication mechanism, etc. Red Door can achieve identity verification and access control policy with a small performance loss, all without modifying the ROS source code, to ensure the availability and authentication of ROS applications to the greatest extent.
Date: December 2020
Creator: Shen, Ziyi
Object Type: Thesis or Dissertation
System: The UNT Digital Library

Encrypted Collaborative Editing Software

Cloud-based collaborative editors enable real-time document processing via remote connections. Their common application is to allow Internet users to collaboratively work on their documents stored in the cloud, even if these users are physically a world apart. However, this convenience comes at a cost in terms of user privacy. Hence, the growth of popularity of cloud computing application stipulates the growth in importance of cloud security. A major concern with the cloud is who has access to user data. In order to address this issue, various third-party services offer encryption mechanisms for protection of the user data in the case of insider attacks or data leakage. However, these services often only encrypt data-at-rest, leaving the data which is being processed potentially vulnerable. The purpose of this study is to propose a prototype software system that encrypts collaboratively edited data in real-time, preserving the user experience similar to that of, e.g., Google Docs.
Date: May 2020
Creator: Tran, Augustin
Object Type: Thesis or Dissertation
System: The UNT Digital Library
A Method of Combining GANs to Improve the Accuracy of Object Detection on Autonomous Vehicles (open access)

A Method of Combining GANs to Improve the Accuracy of Object Detection on Autonomous Vehicles

As the technology in the field of computer vision becomes more and more mature, the autonomous vehicles have achieved rapid developments in recent years. However, the object detection and classification tasks of autonomous vehicles which are based on cameras may face problems when the vehicle is driving at a relatively high speed. One is that the camera will collect blurred photos when driving at high speed which may affect the accuracy of deep neural networks. The other is that small objects far away from the vehicle are difficult to be recognized by networks. In this paper, we present a method to combine two kinds of GANs to solve these problems. We choose DeblurGAN as the base model to remove blur in images. SRGAN is another GAN we choose for solving small object detection problems. Due to the total time of these two are too long, we still do the model compression on it to make it lighter. Then we use the Yolov4 to do the object detection. Finally we do the evaluation of the whole model architecture and proposed a model version 2 based on DeblurGAN and ESPCN which is faster than previous one but the accuracy may be lower.
Date: December 2020
Creator: Ye, Fanjie
Object Type: Thesis or Dissertation
System: The UNT Digital Library

Multi-Source Large Scale Bike Demand Prediction

Current works of bike demand prediction mainly focus on cluster level and perform poorly on predicting demands of a single station. In the first task, we introduce a contextual based bike demand prediction model, which predicts bike demands for per station by combining spatio-temporal network and environment contexts synergistically. Furthermore, since people's movement information is an important factor, which influences the bike demands of each station. To have a better understanding of people's movements, we need to analyze the relationship between different places. In the second task, we propose an origin-destination model to learn place representations by using large scale movement data. Then based on the people's movement information, we incorporate the place embedding into our bike demand prediction model, which is built by using multi-source large scale datasets: New York Citi bike data, New York taxi trip records, and New York POI data. Finally, as deep learning methods have been successfully applied to many fields such as image recognition and natural language processing, it inspires us to incorporate the complex deep learning method into the bike demand prediction problem. So in this task, we propose a deep spatial-temporal (DST) model, which contains three major components: spatial dependencies, temporal dependencies, …
Date: May 2020
Creator: Zhou, Yang
Object Type: Thesis or Dissertation
System: The UNT Digital Library