Registration of Point Sets with Large and Uneven Non-Rigid Deformation

Non-rigid point set registration of significantly uneven deformations is a challenging problem for many applications such as pose estimation, three-dimensional object reconstruction, human movement tracking. In this dissertation, we present a novel probabilistic non-rigid registration method to align point sets with significantly uneven deformations by enforcing constraints from corresponding key points and preserving local neighborhood structures. The registration method is treated as a density estimation problem. Incorporating correspondence among key points regulates the optimization process for large, uneven deformations. In addition, by leveraging neighborhood embedding using Stochastic Neighbor Embedding (SNE) as well as an alternative means based on Locally Linear Embedding (LLE), our method penalizes the incoherent transformation and hence preserves the local structure of point sets. Also, our method detects key points in the point sets based on geodesic distance. Correspondences are established using a new cluster-based, region-aware feature descriptor. This feature descriptor encodes the association of a cluster to the left-right (symmetry) or upper-lower regions of the point sets. We conducted comparison studies using public point sets and our Human point sets. Our experimental results demonstrate that our proposed method successfully reduced the registration error by at least 42.2% in contrast to the state-of-the-art method. Especially, our method …
Date: December 2022
Creator: Maharjan, Amar Man
System: The UNT Digital Library
Detection of Generalizable Clone Security Coding Bugs Using Graphs and Learning Algorithms (open access)

Detection of Generalizable Clone Security Coding Bugs Using Graphs and Learning Algorithms

This research methodology isolates coding properties and identifies the probability of security vulnerabilities using machine learning and historical data. Several approaches characterize the effectiveness of detecting security-related bugs that manifest as vulnerabilities, but none utilize vulnerability patch information. The main contribution of this research is a framework to analyze LLVM Intermediate Representation Code and merging core source code representations using source code properties. This research is beneficial because it allows source programs to be transformed into a graphical form and users can extract specific code properties related to vulnerable functions. The result is an improved approach to detect, identify, and track software system vulnerabilities based on a performance evaluation. The methodology uses historical function level vulnerability information, unique feature extraction techniques, a novel code property graph, and learning algorithms to minimize the amount of end user domain knowledge necessary to detect vulnerabilities in applications. The analysis shows approximately 99% precision and recall to detect known vulnerabilities in the National Institute of Standards and Technology (NIST) Software Assurance Metrics and Tool Evaluation (SAMATE) project. Furthermore, 72% percent of the historical vulnerabilities in the OpenSSL testing environment were detected using a linear support vector classifier (SVC) model.
Date: December 2018
Creator: Mayo, Quentin R
System: The UNT Digital Library
Infusing Automatic Question Generation with Natural Language Understanding (open access)

Infusing Automatic Question Generation with Natural Language Understanding

Automatically generating questions from text for educational purposes is an active research area in natural language processing. The automatic question generation system accompanying this dissertation is MARGE, which is a recursive acronym for: MARGE automatically reads generates and evaluates. MARGE generates questions from both individual sentences and the passage as a whole, and is the first question generation system to successfully generate meaningful questions from textual units larger than a sentence. Prior work in automatic question generation from text treats a sentence as a string of constituents to be rearranged into as many questions as allowed by English grammar rules. Consequently, such systems overgenerate and create mainly trivial questions. Further, none of these systems to date has been able to automatically determine which questions are meaningful and which are trivial. This is because the research focus has been placed on NLG at the expense of NLU. In contrast, the work presented here infuses the questions generation process with natural language understanding. From the input text, MARGE creates a meaning analysis representation for each sentence in a passage via the DeconStructure algorithm presented in this work. Questions are generated from sentence meaning analysis representations using templates. The generated questions are automatically …
Date: December 2016
Creator: Mazidi, Karen
System: The UNT Digital Library
Real Time Assessment of a Video Game Player's State of Mind Using Off-the-Shelf Electroencephalography (open access)

Real Time Assessment of a Video Game Player's State of Mind Using Off-the-Shelf Electroencephalography

The focus of this research is on the development of a real time application that uses a low cost EEG headset to measure a player's state of mind while they play a video game. Using data collected using the Emotiv EPOC headset, various EEG processing techniques are tested to find ways of measuring a person's engagement and arousal levels. The ability to measure a person's engagement and arousal levels provide an opportunity to develop a model that monitor a person's flow while playing video games. Identifying when certain events occur, like when the player dies, will make it easier to identify when a player has left a state of flow. The real time application Brainwave captures data from the wireless Emotiv EPOC headset. Brainwave converts the raw EEG data into more meaningful brainwave band frequencies. Utilizing the brainwave frequencies the program trains multiple machine learning algorithms with data designed to identify when the player dies. Brainwave runs while the player plays through a video gaming monitoring their engagement and arousal levels for changes that cause the player to leave a state of flow. Brainwave reports to researchers and developers when the player dies along with the identification of the players …
Date: December 2016
Creator: McMahan, Timothy
System: The UNT Digital Library
Simulation of Dengue Outbreak in Thailand (open access)

Simulation of Dengue Outbreak in Thailand

The dengue virus has become widespread worldwide in recent decades. It has no specific treatment and affects more than 40% of the entire population in the world. In Thailand, dengue has been a health concern for more than half a century. The highest number of cases in one year was 174,285 in 1987, leading to 1,007 deaths. In the present day, dengue is distributed throughout the entire country. Therefore, dengue has become a major challenge for public health in terms of both prevention and control of outbreaks. Different methodologies and ways of dealing with dengue outbreaks have been put forward by researchers. Computational models and simulations play an important role, as they have the ability to help researchers and officers in public health gain a greater understanding of the virus's epidemic activities. In this context, this dissertation presents a new framework, Modified Agent-Based Modeling (mABM), a hybrid platform between a mathematical model and a computational model, to simulate a dengue outbreak in human and mosquito populations. This framework improves on the realism of former models by utilizing the reported data from several Thai government organizations, such as the Thai Ministry of Public Health (MoPH), the National Statistical Office, and others. …
Date: August 2018
Creator: Meesumrarn, Thiraphat
System: The UNT Digital Library

Combinatorial-Based Testing Strategies for Mobile Application Testing

This work introduces three new coverage criteria based on combinatorial-based event and element sequences that occur in the mobile environment. The novel combinatorial-based criteria are used to reduce, prioritize, and generate test suites for mobile applications. The combinatorial-based criteria include unique coverage of events and elements with different respects to ordering. For instance, consider the coverage of a pair of events, e1 and e2. The least strict criterion, Combinatorial Coverage (CCov), counts the combination of these two events in a test case without respect to the order in which the events occur. That is, the combination (e1, e2) is the same as (e2, e1). The second criterion, Sequence-Based Combinatorial Coverage (SCov), considers the order of occurrence within a test case. Sequences (e1, ..., e2) and (e2,..., e1) are different sequences. The third and strictest criterion is Consecutive-Sequence Combinatorial Coverage (CSCov), which counts adjacent sequences of consecutive pairs. The sequence (e1, e2) is only counted if e1 immediately occurs before e2. The first contribution uses the novel combinatorial-based criteria for the purpose of test suite reduction. Empirical studies reveal that the criteria, when used with event sequences and sequences of size t=2, reduce the test suites by 22.8%-61.3% while the reduced …
Date: December 2020
Creator: Michaels, Ryan P.
System: The UNT Digital Library
Machine Learning Methods for Data Quality Aspects in Edge Computing Platforms (open access)

Machine Learning Methods for Data Quality Aspects in Edge Computing Platforms

In this research, three aspects of data quality with regard to artifical intelligence (AI) have been investigated: detection of misleading fake data, especially deepfakes, data scarcity, and data insufficiency, especially how much training data is required for an AI application. Different application domains where the selected aspects pose issues have been chosen. To address the issues of data privacy, security, and regulation, these solutions are targeted for edge devices. In Chapter 3, two solutions have been proposed that aim to preempt such misleading deepfake videos and images on social media. These solutions are deployable at edge devices. In Chapter 4, a deepfake resilient digital ID system has been described. Another data quality aspect, data scarcity, has been addressed in Chapter 5. One of such agricultural problems is estimating crop damage due to natural disasters. Data insufficiency is another aspect of data quality. The amount of data required to achieve acceptable accuracy in a machine learning (ML) model has been studied in Chapter 6. As the data scarcity problem is studied in the agriculture domain, a similar scenario—plant disease detection and damage estimation—has been chosen for this verification. This research aims to provide ML or deep learning (DL)-based methods to solve …
Date: December 2022
Creator: Mitra, Alakananda
System: The UNT Digital Library

COVID-19 Diagnosis and Segmentation Using Machine Learning Analyses of Lung Computerized Tomography

COVID-19 is a highly contagious and virulent disease caused by the severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). COVID-19 disease induces lung changes observed in lung computerized tomography (CT) and the percentage of those diseased areas on the CT correlates with the severity of the disease. Therefore, segmentation of CT images to delineate the diseased or lesioned areas is a logical first step to quantify disease severity, which will help physicians predict disease prognosis and guide early treatments to deliver more positive patient outcomes. It is crucial to develop an automated analysis of CT images to save their time and efforts. This dissertation proposes CoviNet, a deep three-dimensional convolutional neural network (3D-CNN) to diagnose COVID-19 in CT images. It also proposes CoviNet Enhanced, a hybrid approach with 3D-CNN and support vector machines. It also proposes CoviSegNet and CoviSegNet Enhanced, which are enhanced U-Net models to segment ground-glass opacities and consolidations observed in computerized tomography (CT) images of COVID-19 patients. We trained and tested the proposed approaches using several public datasets of CT images. The experimental results show the proposed methods are highly effective for COVID-19 detection and segmentation and exhibit better accuracy, precision, sensitivity, specificity, F-1 score, Matthew's correlation coefficient (MCC), dice …
Date: August 2021
Creator: Mittal, Bhuvan
System: The UNT Digital Library
Sentence Similarity Analysis with Applications in Automatic Short Answer Grading (open access)

Sentence Similarity Analysis with Applications in Automatic Short Answer Grading

In this dissertation, I explore unsupervised techniques for the task of automatic short answer grading. I compare a number of knowledge-based and corpus-based measures of text similarity, evaluate the effect of domain and size on the corpus-based measures, and also introduce a novel technique to improve the performance of the system by integrating automatic feedback from the student answers. I continue to combine graph alignment features with lexical semantic similarity measures and employ machine learning techniques to show that grade assignment error can be reduced compared to a system that considers only lexical semantic measures of similarity. I also detail a preliminary attempt to align the dependency graphs of student and instructor answers in order to utilize a structural component that is necessary to simulate human-level grading of student answers. I further explore the utility of these techniques to several related tasks in natural language processing including the detection of text similarity, paraphrase, and textual entailment.
Date: August 2012
Creator: Mohler, Michael A. G.
System: The UNT Digital Library

Understanding and Addressing Accessibility Barriers Faced by People with Visual Impairments on Block-Based Programming Environments

There is an increased use of block-based programming environments in K-12 education and computing outreach activities to introduce novices to programming and computational thinking skills. However, despite their appealing design that allows students to focus on concepts rather than syntax, block-based programming by design is inaccessible to people with visual impairments and people who cannot use the mouse. In addition to this inaccessibility, little is known about the instructional experiences of students with visual impairments on current block-based programming environments. This dissertation addresses this gap by (1) investigating the challenges that students with visual impairments face on current block-based programming environments and (2) exploring ways in which we can use the keyboard and the screen reader to create block-based code. Through formal survey and interview studies with teachers of students with visual impairments and students with visual impairments, we identify several challenges faced by students with visual impairments on block-based programming environments. Using the knowledge of these challenges and building on prior work, we explore how to leverage the keyboard and the screen reader to improve the accessibility of block-based programming environments through a prototype of an accessible block-based programming library. In this dissertation, our empirical evaluations demonstrate that people …
Date: December 2022
Creator: Mountapmbeme, Aboubakar
System: The UNT Digital Library

A Top-Down Policy Engineering Framework for Attribute-Based Access Control

The purpose of this study is to propose a top-down policy engineering framework for attribute-based access control (ABAC) that aims to automatically extract ACPs from requirement specifications documents, and then, using the extracted policies, build or update an ABAC model. We specify a procedure that consists of three main components: 1) ACP sentence identification, 2) policy element extraction, and 3) ABAC model creation and update. ACP sentence identification processes unrestricted natural language documents and identify the sentences that carry ACP content. We propose and compare three different methodologies from different disciplines, namely deep recurrent neural networks (RNN-based), biological immune system (BIS-based), and a combination of multiple natural language processing techniques (PMI-based) in order to identify the proper methodology for extracting ACP sentences from irrelevant text. Our evaluation results improve the state-of-the-art by a margin of 5% F1-Measure. To aid future research, we also introduce a new dataset that includes 5000 sentences from real-world policy documents. ABAC policy extraction extracts ACP elements such as subject, object, and action from the identified ACPs. We use semantic roles and correctly identify ACP elements with an average F1 score of 75%, which bests the previous work by 15%. Furthermore, as SRL tools are often …
Date: May 2020
Creator: Narouei, Masoud
System: The UNT Digital Library
Detection of Temporal Events and Abnormal Images for Quality Analysis in Endoscopy Videos (open access)

Detection of Temporal Events and Abnormal Images for Quality Analysis in Endoscopy Videos

Recent reports suggest that measuring the objective quality is very essential towards the success of colonoscopy. Several quality indicators (i.e. metrics) proposed in recent studies are implemented in software systems that compute real-time quality scores for routine screening colonoscopy. Most quality metrics are derived based on various temporal events occurred during the colonoscopy procedure. The location of the phase boundary between the insertion and the withdrawal phases and the amount of circumferential inspection are two such important temporal events. These two temporal events can be determined by analyzing various camera motions of the colonoscope. This dissertation put forward a novel method to estimate X, Y and Z directional motions of the colonoscope using motion vector templates. Since abnormalities of a WCE or a colonoscopy video can be found in a small number of frames (around 5% out of total frames), it is very helpful if a computer system can decide whether a frame has any mucosal abnormalities. Also, the number of detected abnormal lesions during a procedure is used as a quality indicator. Majority of the existing abnormal detection methods focus on detecting only one type of abnormality or the overall accuracies are somewhat low if the method tries to …
Date: August 2013
Creator: Nawarathna, Ruwan D.
System: The UNT Digital Library
Split array and scalar data cache: A comprehensive study of data cache organization. (open access)

Split array and scalar data cache: A comprehensive study of data cache organization.

Existing cache organization suffers from the inability to distinguish different types of localities, and non-selectively cache all data rather than making any attempt to take special advantage of the locality type. This causes unnecessary movement of data among the levels of the memory hierarchy and increases in miss ratio. In this dissertation I propose a split data cache architecture that will group memory accesses as scalar or array references according to their inherent locality and will subsequently map each group to a dedicated cache partition. In this system, because scalar and array references will no longer negatively affect each other, cache-interference is diminished, delivering better performance. Further improvement is achieved by the introduction of victim cache, prefetching, data flattening and reconfigurability to tune the array and scalar caches for specific application. The most significant contribution of my work is the introduction of novel cache architecture for embedded microprocessor platforms. My proposed cache architecture uses reconfigurability coupled with split data caches to reduce area and power consumed by cache memories while retaining performance gains. My results show excellent reductions in both memory size and memory access times, translating into reduced power consumption. Since there was a huge reduction in miss rates …
Date: August 2007
Creator: Naz, Afrin
System: The UNT Digital Library
Extracting Useful Information from Social Media during Disaster Events (open access)

Extracting Useful Information from Social Media during Disaster Events

In recent years, social media platforms such as Twitter and Facebook have emerged as effective tools for broadcasting messages worldwide during disaster events. With millions of messages posted through these services during such events, it has become imperative to identify valuable information that can help the emergency responders to develop effective relief efforts and aid victims. Many studies implied that the role of social media during disasters is invaluable and can be incorporated into emergency decision-making process. However, due to the "big data" nature of social media, it is very labor-intensive to employ human resources to sift through social media posts and categorize/classify them as useful information. Hence, there is a growing need for machine intelligence to automate the process of extracting useful information from the social media data during disaster events. This dissertation addresses the following questions: In a social media stream of messages, what is the useful information to be extracted that can help emergency response organizations to become more situationally aware during and following a disaster? What are the features (or patterns) that can contribute to automatically identifying messages that are useful during disasters? We explored a wide variety of features in conjunction with supervised learning algorithms …
Date: May 2017
Creator: Neppalli, Venkata Kishore
System: The UNT Digital Library
Secure and Energy Efficient Execution Frameworks Using Virtualization and Light-weight Cryptographic Components (open access)

Secure and Energy Efficient Execution Frameworks Using Virtualization and Light-weight Cryptographic Components

Security is a primary concern in this era of pervasive computing. Hardware based security mechanisms facilitate the construction of trustworthy secure systems; however, existing hardware security approaches require modifications to the micro-architecture of the processor and such changes are extremely time consuming and expensive to test and implement. Additionally, they incorporate cryptographic security mechanisms that are computationally intensive and account for excessive energy consumption, which significantly degrades the performance of the system. In this dissertation, I explore the domain of hardware based security approaches with an objective to overcome the issues that impede their usability. I have proposed viable solutions to successfully test and implement hardware security mechanisms in real world computing systems. Moreover, with an emphasis on cryptographic memory integrity verification technique and embedded systems as the target application, I have presented energy efficient architectures that considerably reduce the energy consumption of the security mechanisms, thereby improving the performance of the system. The detailed simulation results show that the average energy savings are in the range of 36% to 99% during the memory integrity verification phase, whereas the total power savings of the entire embedded processor are approximately 57%.
Date: August 2014
Creator: Nimgaonkar, Satyajeet
System: The UNT Digital Library
Hybrid Approaches in Test Suite Prioritization (open access)

Hybrid Approaches in Test Suite Prioritization

The rapid advancement of web and mobile application technologies has recently posed numerous challenges to the Software Engineering community, including how to cost-effectively test applications that have complex event spaces. Many software testing techniques attempt to cost-effectively improve the quality of such software. This dissertation primarily focuses on that of hybrid test suite prioritization. The techniques utilize two or more criteria to perform test suite prioritization as it is often insufficient to use only a single criterion. The dissertation consists of the following contributions: (1) a weighted test suite prioritization technique that employs the distance between criteria as a weighting factor, (2) a coarse-to-fine grained test suite prioritization technique that uses a multilevel approach to increase the granularity of the criteria at each subsequent iteration, (3) the Caret-HM tool for Android user session-based testing that allows testers to record, replay, and create heat maps from user interactions with Android applications via a web browser, and (4) Android user session-based test suite prioritization techniques that utilize heuristics developed from user sessions created by Caret-HM. Each of the chapters empirically evaluate the respective techniques. The proposed techniques generally show improved or equally good performance when compared to the baselines, depending on an …
Date: May 2018
Creator: Nurmuradov, Dmitriy
System: The UNT Digital Library
A Computational Methodology for Addressing Differentiated Access of Vulnerable Populations During Biological Emergencies (open access)

A Computational Methodology for Addressing Differentiated Access of Vulnerable Populations During Biological Emergencies

Mitigation response plans must be created to protect affected populations during biological emergencies resulting from the release of harmful biochemical substances. Medical countermeasures have been stockpiled by the federal government for such emergencies. However, it is the responsibility of local governments to maintain solid, functional plans to apply these countermeasures to the entire target population within short, mandated time frames. Further, vulnerabilities in the population may serve as barriers preventing certain individuals from participating in mitigation activities. Therefore, functional response plans must be capable of reaching vulnerable populations.Transportation vulnerability results from lack of access to transportation. Transportation vulnerable populations located too far from mitigation resources are at-risk of not being able to participate in mitigation activities. Quantification of these populations requires the development of computational methods to integrate spatial demographic data and transportation resource data from disparate sources into the context of planned mitigation efforts. Research described in this dissertation focuses on quantifying transportation vulnerable populations and maximizing participation in response efforts. Algorithms developed as part of this research are integrated into a computational framework to promote a transition from research and development to deployment and use by biological emergency planners.
Date: August 2014
Creator: O'Neill, Martin Joseph, II
System: The UNT Digital Library

Helping Students with Upper Limb Motor Impairments Program in a Block-Based Programming Environment Using Voice

Students with upper body motor impairments, such as cerebral palsy, multiple sclerosis, ALS, etc., face challenges when learning to program in block-based programming environments, because these environments are highly dependent on the physical manipulation of a mouse or keyboard to drag and drop elements on the screen. In my dissertation, I make the block-based programming environment Blockly, accessible to students with upper body motor impairment by adding speech as an alternative form of input. This voice-enabled version of Blockly will reduce the need for the use of a mouse or keyboard, making it more accessible to students with upper body motor impairments. The voice-enabled Blockly system consists of the original Blockly application, a speech recognition API, predefined voice commands, and a custom function. Three user studies have been conducted, a preliminary study, a usability study, and an A/B test. These studies revealed a lot of information, such as the need for simpler, shorter, and more intuitive commands, the need to change the target audience, the shortcomings of speech recognition systems, etc. The feedback received from each study influenced design decisions at different phases. The findings also gave me insight into the direction I would like to go in the future. …
Date: August 2022
Creator: Okafor, Obianuju Chinonye
System: The UNT Digital Library
Geostatistical Inspired Metamodeling and Optimization of Nanoscale Analog Circuits (open access)

Geostatistical Inspired Metamodeling and Optimization of Nanoscale Analog Circuits

The current trend towards miniaturization of modern consumer electronic devices significantly affects their design. The demand for efficient all-in-one appliances leads to smaller, yet more complex and powerful nanoelectronic devices. The increasing complexity in the design of such nanoscale Analog/Mixed-Signal Systems-on-Chip (AMS-SoCs) presents difficult challenges to designers. One promising design method used to mitigate the burden of this design effort is the use of metamodeling (surrogate) modeling techniques. Their use significantly reduces the time for computer simulation and design space exploration and optimization. This dissertation addresses several issues of metamodeling based nanoelectronic based AMS design exploration. A surrogate modeling technique which uses geostatistical based Kriging prediction methods in creating metamodels is proposed. Kriging prediction techniques take into account the correlation effects between input parameters for performance point prediction. We propose the use of Kriging to utilize this property for the accurate modeling of process variation effects of designs in the deep nanometer region. Different Kriging methods have been explored for this work such as simple and ordinary Kriging. We also propose another metamodeling technique Kriging-Bootstrapped Neural Network that combines the accuracy and process variation awareness of Kriging with artificial neural network models for ultra-fast and accurate process aware metamodeling design. …
Date: May 2014
Creator: Okobiah, Oghenekarho
System: The UNT Digital Library
Kriging Methods to Exploit Spatial Correlations of EEG Signals for Fast and Accurate Seizure Detection in the IoMT (open access)

Kriging Methods to Exploit Spatial Correlations of EEG Signals for Fast and Accurate Seizure Detection in the IoMT

Epileptic seizure presents a formidable threat to the life of its sufferers, leaving them unconscious within seconds of its onset. Having a mortality rate that is at least twice that of the general population, it is a true cause for concern which has gained ample attention from various research communities. About 800 million people in the world will have at least one seizure experience in their lifespan. Injuries sustained during a seizure crisis are one of the leading causes of death in epilepsy. These can be prevented by an early detection of seizure accompanied by a timely intervention mechanism. The research presented in this dissertation explores Kriging methods to exploit spatial correlations of electroencephalogram (EEG) Signals from the brain, for fast and accurate seizure detection in the Internet of Medical Things (IoMT) using edge computing paradigms, by modeling the brain as a three-dimensional spatial object, similar to a geographical panorama. This dissertation proposes basic, hierarchical and distributed Kriging models, with a deep neural network (DNN) wrapper in some instances. Experimental results from the models are highly promising for real-time seizure detection, with excellent performance in seizure detection latency and training time, as well as accuracy, sensitivity and specificity which compare …
Date: August 2020
Creator: Olokodana, Ibrahim Latunde
System: The UNT Digital Library
On-Loom Fabric Defect Inspection Using Contact Image Sensors and Activation Layer Embedded Convolutional Neural Network (open access)

On-Loom Fabric Defect Inspection Using Contact Image Sensors and Activation Layer Embedded Convolutional Neural Network

Malfunctions on loom machines are the main causes of faulty fabric production. An on-loom fabric inspection system is a real-time monitoring device that enables immediate defect detection for human intervention. This dissertation presented a solution for the on-loom fabric defect inspection, including the new hardware design—the configurable contact image sensor (CIS) module—for on-loom fabric scanning and the defect detection algorithms. The main contributions of this work include (1) creating a configurable CIS module adaptable to a loom width, which brings CIS unique features, such as sub-millimeter resolution, compact size, short working distance and low cost, to the fabric defect inspection system, (2) designing a two-level hardware architecture that can be efficiently deployed in a weaving factory with hundreds of looms, (3) developing a two-level inspecting scheme, with which the initial defect screening is performed on the Raspberry Pi and the intensive defect verification is processed on the cloud server, (4) introducing the novel pairwise-potential activation layer to a convolutional neural network that leads to high accuracies of defect segmentation on fabrics with fine and imbalanced structures, (5) achieving a real-time defect detection that allows a possible defect to be examined multiple times, and (6) implementing a new color segmentation technique …
Date: December 2018
Creator: Ouyang, Wenbin
System: The UNT Digital Library
Reading with Robots: A Platform to Promote Cognitive Exercise through Identification and Discussion of Creative Metaphor in Books (open access)

Reading with Robots: A Platform to Promote Cognitive Exercise through Identification and Discussion of Creative Metaphor in Books

Maintaining cognitive health is often a pressing concern for aging adults, and given the world's shifting age demographics, it is impractical to assume that older adults will be able to rely on individualized human support for doing so. Recently, interest has turned toward technology as an alternative. Companion robots offer an attractive vehicle for facilitating cognitive exercise, but the language technologies guiding their interactions are still nascent; in elder-focused human-robot systems proposed to date, interactions have been limited to motion or buttons and canned speech. The incapacity of these systems to autonomously participate in conversational discourse limits their ability to engage users at a cognitively meaningful level. I addressed this limitation by developing a platform for human-robot book discussions, designed to promote cognitive exercise by encouraging users to consider the authors' underlying intentions in employing creative metaphors. The choice of book discussions as the backdrop for these conversations has an empirical basis in neuro- and social science research that has found that reading often, even in late adulthood, has been correlated with a decreased likelihood to exhibit symptoms of cognitive decline. The more targeted focus on novel metaphors within those conversations stems from prior work showing that processing novel metaphors …
Date: August 2018
Creator: Parde, Natalie
System: The UNT Digital Library
Indoor Localization Using Magnetic Fields (open access)

Indoor Localization Using Magnetic Fields

Indoor localization consists of locating oneself inside new buildings. GPS does not work indoors due to multipath reflection and signal blockage. WiFi based systems assume ubiquitous availability and infrastructure based systems require expensive installations, hence making indoor localization an open problem. This dissertation consists of solving the problem of indoor localization by thoroughly exploiting the indoor ambient magnetic fields comprising mainly of disturbances termed as anomalies in the Earth’s magnetic field caused by pillars, doors and elevators in hallways which are ferromagnetic in nature. By observing uniqueness in magnetic signatures collected from different campus buildings, the work presents the identification of landmarks and guideposts from these signatures and further develops magnetic maps of buildings - all of which can be used to locate and navigate people indoors. To understand the reason behind these anomalies, first a comparison between the measured and model generated Earth’s magnetic field is made, verifying the presence of a constant field without any disturbances. Then by modeling the magnetic field behavior of different pillars such as steel reinforced concrete, solid steel, and other structures like doors and elevators, the interaction of the Earth’s field with the ferromagnetic fields is described thereby explaining the causes of the …
Date: December 2011
Creator: Pathapati Subbu, Kalyan Sasidhar
System: The UNT Digital Library
Mediation on XQuery Views (open access)

Mediation on XQuery Views

The major goal of information integration is to provide efficient and easy-to-use access to multiple heterogeneous data sources with a single query. At the same time, one of the current trends is to use standard technologies for implementing solutions to complex software problems. In this dissertation, I used XML and XQuery as the standard technologies and have developed an extended projection algorithm to provide a solution to the information integration problem. In order to demonstrate my solution, I implemented a prototype mediation system called Omphalos based on XML related technologies. The dissertation describes the architecture of the system, its metadata, and the process it uses to answer queries. The system uses XQuery expressions (termed metaqueries) to capture complex mappings between global schemas and data source schemas. The system then applies these metaqueries in order to rewrite a user query on a virtual global database (representing the integrated view of the heterogeneous data sources) to a query (termed an outsourced query) on the real data sources. An extended XML document projection algorithm was developed to increase the efficiency of selecting the relevant subset of data from an individual data source to answer the user query. The system applies the projection algorithm …
Date: December 2006
Creator: Peng, Xiaobo
System: The UNT Digital Library