18 Matching Results

Results open in a new window/tab.

Supporting information for Abraham model correlations for solute partitioning into o-xylene, m-xylene and p-xylene from both water and the gas phase (open access)

Supporting information for Abraham model correlations for solute partitioning into o-xylene, m-xylene and p-xylene from both water and the gas phase

This document includes supporting information and figures for an article on the Abraham model correlations for solute partitioning into o-xylene, m-xylene and p-xylene from both water and the gas phase.
Date: September 2011
Creator: Stephens, Timothy W.; De la Rosa, Nohelli E.; Saifullah, Mariam; Ye, Shulin; Quay, Amanda N.; Chou, Vicky et al.
System: The UNT Digital Library
Supplemental Material: Enthalpy of Solvation Correlations for Gaseous Solutes Dissolved in Alcohol Solvents Based on the Abraham Model (open access)

Supplemental Material: Enthalpy of Solvation Correlations for Gaseous Solutes Dissolved in Alcohol Solvents Based on the Abraham Model

This document includes supplemental material to an article titled "Enthalpy of solvation correlations for gaseous solutes dissolved in alcohol solvents based on the Abraham model," published in QSAR & Combinatorial Science.
Date: December 7, 2007
Creator: Mintz, Christina; Ladlie, Tara; Burton, Katherine; Clark, Michael; Acree, William E. (William Eugene) & Abraham, M. H. (Michael H.)
System: The UNT Digital Library
Supplemental Material for Correlation of Human and Animal Air-to-Blood Partition Coefficients with a Single Linear Free Energy Relationship Model (open access)

Supplemental Material for Correlation of Human and Animal Air-to-Blood Partition Coefficients with a Single Linear Free Energy Relationship Model

This document includes supplemental material to an article titled "Correlation of human and animal air-to-blood partition coefficients with a single linear free energy relationship model," published in QSAR & Combinatorial Science.
Date: July 25, 2008
Creator: Sprunger, Laura M.; Gibbs, Jennifer; Acree, William E. (William Eugene) & Abraham, M. H. (Michael H.)
System: The UNT Digital Library
Supplemental Material: Enthalpy of Solvation Correlations for Gaseous Solutes Dissolved in Linear Alkanes (C5 thru C16) Based on the Abraham Model (open access)

Supplemental Material: Enthalpy of Solvation Correlations for Gaseous Solutes Dissolved in Linear Alkanes (C5 thru C16) Based on the Abraham Model

This document includes supplemental material to an article titled "Enthalpy of solvation correlations for gaseous solutes dissolved in linear alkanes (C5 thru C16) based on the Abraham model," published in QSAR & Combinatorial Science.
Date: June 2007
Creator: Mintz, Christina; Burton, Katherine; Acree, William E. (William Eugene) & Abraham, M. H. (Michael H.)
System: The UNT Digital Library
Supplemental Material: Enthalpy of Solvation Correlations for Gaseous Solutes Dissolved in Benzene and in Alkane Solvents Based on the Abraham Model (open access)

Supplemental Material: Enthalpy of Solvation Correlations for Gaseous Solutes Dissolved in Benzene and in Alkane Solvents Based on the Abraham Model

This document includes supplemental material to an article titled "Enthalpy of solvation correlations for gaseous solutes dissolved in benzene and in alkane solvents based on the Abraham model," published in QSAR & Combinatorial Science.
Date: February 13, 2007
Creator: Mintz, Christina; Clark, Michael; Burton, Katherine; Acree, William E. (William Eugene) & Abraham, M. H. (Michael H.)
System: The UNT Digital Library
Supporting Material for: Thermochemical Investigations of Solute Transfer into Ionic Liquid Solvents: Updated Abraham Model Equation Coefficients for Solute Activity Coefficient and Partition Coefficient Predictions (open access)

Supporting Material for: Thermochemical Investigations of Solute Transfer into Ionic Liquid Solvents: Updated Abraham Model Equation Coefficients for Solute Activity Coefficient and Partition Coefficient Predictions

This document includes supplemental material to an article titled "Thermochemical Investigations of Solute Transfer into Ionic Liquid Solvents: Updated Abraham Model Equation Coefficients for Solute Activity Coefficient and Partition Coefficient Predictions," published in Physics and Chemistry of Liquids.
Date: February 25, 2014
Creator: Stephens, Timothy W.; Chou, Vicky; Quay, Amanda N.; Shen, Connie; Dabadge, Nishu; Tian, Amy et al.
System: The UNT Digital Library
Supporting Information: Thermochemical studies on 3-methylquinoxaline-2-carboxamide 1,4-dioxide derivatives: enthalpies of formation and of (N-O) bond dissociation (open access)

Supporting Information: Thermochemical studies on 3-methylquinoxaline-2-carboxamide 1,4-dioxide derivatives: enthalpies of formation and of (N-O) bond dissociation

This document includes supplemental material to an article titled "Thermochemical studies on 3-methylquinoxaline-2-carboxamide 1,4-dioxide derivatives: enthalpies of formation and of (N-O) bond dissociation," published in the Journal of Physical Chemistry B.
Date: February 3, 2007
Creator: Gomes, José R. B.; Sousa, Emanuel A.; Gomes, Paula; Vale, Nuno; Gonçalves, Jorge M.; Pandey, Siddharth et al.
System: The UNT Digital Library
Supporting Material for: Enthalpy of Solvation Correlations for Gaseous Solutes Dissolved in Water and in 1-Octanol Based on the Abraham Model (open access)

Supporting Material for: Enthalpy of Solvation Correlations for Gaseous Solutes Dissolved in Water and in 1-Octanol Based on the Abraham Model

This document includes supporting material for an article titled, "Enthalpy of solvation correlations for gaseous solutes dissolved in water and in 1-octanol based on the Abraham model," published in the Journal of Chemical Information and Modeling.
Date: December 15, 2007
Creator: Mintz, Christina; Clark, Michael; Acree, William E. (William Eugene) & Abraham, M. H. (Michael H.)
System: The UNT Digital Library
Developing a Biomanufacturing Platform for the Site-Selective Functionalization and Structural Diversification of Cytochalasan-Based Carbon Skeletons (open access)

Developing a Biomanufacturing Platform for the Site-Selective Functionalization and Structural Diversification of Cytochalasan-Based Carbon Skeletons

Data management plan for the grant, "Developing a Biomanufacturing Platform for the Site-Selective Functionalization and Structural Diversification of Cytochalasan-Based Carbon Skeletons." This project will identify fungal enzymes that efficiently modify more than one substrate in a predictable way. Also, enzymes will be engineered to expand the range of substrates. A biomanufacturing platform to synthesize bioactive molecules at lower costs will be the end result. Fungi can synthesize small molecules with complex structures using a number of highly coordinated enzymes. These molecules are difficult to make synthetically, and they can aid in crop production or have beneficial human health effects. Cytochalasans are phytotoxic, cytotoxic and actin-binding natural products. Produced by fungi, over 400 variants have been described. The structural diversity is partly explained by the flexibility of the enzymes that introduce and modify functional groups. These enzymes structurally rearrange the core carbon skeleton in a site-selective manner, often on more than one substrate. Genome mining will be used to identify cytochalasan tailoring enzymes. Overproducing strains will be characterized chemically. Transcription factor over-expression will be investigated. Targeted gene knock-out will confirm the function and scope of the enzymes. The enzymes will be engineered to expand their substrate range. Synthetic biology and metabolic …
Date: 2021-03-01/2024-02-29
Creator: Skellam, Elizabeth
System: The UNT Digital Library
Functional Porous Organic Polymers as Advanced Decontamination Materials for Water Purification (open access)

Functional Porous Organic Polymers as Advanced Decontamination Materials for Water Purification

Data management plan for the grant "Functional Porous Organic Polymers as Advanced Decontamination Materials for Water Purification." This project seeks to develop and deploy a new class of porous organic polymers which have high capacity and selectivity to rapidly remove heavy metal contaminants well below parts per million level standards set by the Environmental Protection Agency. The project will engineer porosity and surface chemistry of porous organic polymers to clean inorganic heavy metal contaminants from both surface water and wastewater. Porous organic polymers are robust, chemically and thermally stable, scalable, and modular, with very high surface area. The modularity of these polymers allows for a molecular-level tuning of the pore structure and surface chemistry that allows for engineered site-specificity of binding sites that target the heavy metal contaminants. Recent data shows these new materials offer a significant increase in capacity relative to benchmark materials, with a rapid removal of mercury and other heavy metal ions. This project will advance the concept by exploring rational design of these porous polymers with different topologies by customizing the monomer with various binding groups. The objectives of the project include design, synthesis, and characterization, followed by assessment of these materials to remove inorganic contaminants …
Date: 2021-02-01/2021-07-31
Creator: Ma, Shengqian
System: The UNT Digital Library
Metal Oxynitrides: Tuning Metal-N and Metal-O Interactions for Improved Electrocatalytic Properties at the Liquid/Solid Interface (open access)

Metal Oxynitrides: Tuning Metal-N and Metal-O Interactions for Improved Electrocatalytic Properties at the Liquid/Solid Interface

Data management plan for the grant "Metal Oxynitrides: Tuning Metal-N and Metal-O Interactions for Improved Electrocatalytic Properties at the Liquid/Solid Interface." Research investigating the fundamental chemical interactions relevant to the conversion of dinitrogen to ammonia via more energy-efficient routes. The studies will help in understanding the chemical and material factors that are most important for optimizing new materials for ammonia production from dinitrogen, and applications to other important industrial reactions.
Date: 2021-08-01/2024-07-31
Creator: Kelber, Jeffry A.; Cundari, Thomas R., 1964- & D'Souza, Francis
System: The UNT Digital Library
Development of Novel Approaches to Earth-abundant Methane Catalysis (open access)

Development of Novel Approaches to Earth-abundant Methane Catalysis

Data management plan for the grant "Development of Novel Approaches to Earth-abundant Methane Catalysis." Research on catalytic cycles for C–H activation and functionalization of light alkanes based on the CMD (concerted metalation deprotonation) mechanism will be modeled for Earth-abundant metal dicarboxylates and related complexes. The impact of inner and outer coordination sphere effects upon catalytic cycles for light alkane functionalization will be assessed using computational chemistry techniques. The aforementioned studies will be leveraged to identify promising, synthetically feasible lead catalysts for experimental collaborators.
Date: 2021-08-15/2024-08-14
Creator: Cundari, Thomas R., 1964-
System: The UNT Digital Library
MRI: Acquisition of a High Performance Hybrid Computer Cluster for Computational Modeling (open access)

MRI: Acquisition of a High Performance Hybrid Computer Cluster for Computational Modeling

Data management plan for the grant, "MRI: Acquisition of a High Performance Hybrid Computer Cluster for Computational Modeling." Research grant for the purchase, installation, and operation of a new high-performance computing (HPC) resource, called CRUNTCH4, to be deployed at the University of North Texas’ (UNT) Center for Advanced Scientific Computing and Modeling (CASCaM). This much needed HPC resource combines different computing architectures and significant amounts of data storage, all connected via a high-speed communications fabric. This computing resource will provide the means for CASCaM investigators to continue research on a broad range of topics including quantum chemistry, materials design, biomolecular simulations, machine-learning based chemical discovery, and bioinformatics, among others.
Date: 2021-10-01/2024-09-30
Creator: Cundari, Thomas R., 1964-; Du, Jincheng; Andreussi, Oliviero & Yan, Hao
System: The UNT Digital Library
Metal Organic Frameworks Containing Frustrated Lewis Pairs for Hydrogen Storage at Ambient Temperature (open access)

Metal Organic Frameworks Containing Frustrated Lewis Pairs for Hydrogen Storage at Ambient Temperature

Data Management Plan for the research project: Metal Organic Frameworks Containing Frustrated Lewis Pairs for Hydrogen Storage at Ambient Temperature. Research to design, synthesize, and characterize novel sorbent materials for hydrogen storage. The materials are based on a Metal-Organic Framework and incorporate Frustrated Lewis Pairs (FLP-MOF). The project seeks to optimize the hydrogen storage capacity of the FLP-MOF systems at ambient temperature and under high pressure.
Date: 2021-07-01/2024-06-30
Creator: Ma, Shengqian
System: The UNT Digital Library
Analyzing existing support structures for transfer students in Chemistry between the University of North Texas and Dallas College (open access)

Analyzing existing support structures for transfer students in Chemistry between the University of North Texas and Dallas College

Data management plan for a grant seeking to analyze existing support structures for transfer students in Chemistry between the University of North Texas and Dallas College.
Date: 2022-12-01/2023-11-30
Creator: Atkinson, Molly B.
System: The UNT Digital Library
Examining the Viability of the use of Sarocladium zeae as a Biocontrol Agent in the Agricultural Production of Maize (open access)

Examining the Viability of the use of Sarocladium zeae as a Biocontrol Agent in the Agricultural Production of Maize

Data management plan for the grant, "Examining the Viability of the use of Sarocladium zeae as a Biocontrol Agent in the Agricultural Production of Maize." Sarocladium zeae is a fungus that naturally grows within corn and produces pyrrocidines, compounds that inhibit the production of two exogenous threats to maize, aflatoxins and fumonisins. This project aims to identify other natural products that may be produced by S. zeae through genetic modification in native and non-native fungal hosts to ensure there are no toxins present. In doing so, further information will be gathered about the possibility of using S. zeae as a targeted biocontrol agent that protects against exogenous threats while remaining safe for consumption.
Date: 2023-06-01/2026-05-31
Creator: Skellam, Elizabeth & Schoellhorn, Sydney
System: The UNT Digital Library
The Molecular Building Block Sampling Approach for Polymorphic Free Energy Calculations (open access)

The Molecular Building Block Sampling Approach for Polymorphic Free Energy Calculations

Data management plan for the grant, "The Molecular Building Block Sampling Approach for Polymorphic Free Energy Calculations."
Date: 2023-07-01/2024-06-30
Creator: Valsson, Omar
System: The UNT Digital Library
CAS: Highly Interacting Panchromatic Push-Pull Systems: Symmetry Breaking and Quantum Coherence in Electron Transfer (open access)

CAS: Highly Interacting Panchromatic Push-Pull Systems: Symmetry Breaking and Quantum Coherence in Electron Transfer

Data management plan for the grant, "CAS: Highly Interacting Panchromatic Push-Pull Systems: Symmetry Breaking and Quantum Coherence in Electron Transfer."
Date: 2024-04-01/2027-03-31
Creator: Wang, Hong
System: The UNT Digital Library