UNT Texas Fashion Collection: Assessment and Preservation Training (open access)

UNT Texas Fashion Collection: Assessment and Preservation Training

Data management plan for the grant, "UNT Texas Fashion Collection: Assessment and Preservation Training."
Date: 2023-12-01/2024-08-31
Creator: Becker, Annette
System: The UNT Digital Library
Development of Genetic Sensors and Circuits for Creating Novel Cellular Behaviors (open access)

Development of Genetic Sensors and Circuits for Creating Novel Cellular Behaviors

Data management plan for the grant "Development of Genetic Sensors and Circuits for Creating Novel Cellular Behaviors." This research is expected to advance the capability to engineer organisms for biomedical uses. Specifically, the outcomes of this project include design principles for engineering regulators from different protein families, an extensive set of genetic sensors for detecting a broad range of signals, and novel genetic circuits that address uprising problems in biomedical fields. It uses a novel multidisciplinary approach to enhance the health of the nation by creating tools that facilitate both medical-related discoveries and the implementation of new strategies for biomedical applications.
Date: 2021-09-15/2026-08-31
Creator: Chan, Clement T. Y.
System: The UNT Digital Library
CAREER: Shape Memory Polymers as Biomaterial (open access)

CAREER: Shape Memory Polymers as Biomaterial

Data management plan for the grant, "CAREER: Shape Memory Polymers as Biomaterial." This CAREER projectaimsto elucidate the underlying mechanism of the plasticization-induced shape memory effect of thiol-enebased polymers. The model application for this material will be a heat shrink tubing that can shrink at bodily conditions (37° C and simulated body fluids) and can be used to seal colonic anastomosis. The specific three aims are to (1) Systematically investigate the effect of crosslink-density and chain extender length on theplasticization-induced shape memory effect of thiol-enebased polymers. Mechanical and thermomechanical measurements inside simulated body fluids will be used to assess shape memory properties and structure-property relationships. (2) Understand the relationship between material thickness, degree of shape-programming, and radial recovery forces of tube-shaped SMPs to determine optimal design parameters for sufficient shape recovery using the heat shrink tube model. (3) Demonstrate the functionality of a biomedical heat shrink tube that utilizes the plasticization-induced shape recovery through an ex vivo colon anastomosis model and quantify mechanical and sealing properties.
Date: 2023-02-01/2028-01-31
Creator: Ecker, Melanie
System: The UNT Digital Library
New approach based on enzyme stimulating of peptides for targeting drug resistance breast cancers (open access)

New approach based on enzyme stimulating of peptides for targeting drug resistance breast cancers

Data management plan for the grant, "New approach based on enzyme stimulating of peptides for targeting drug resistance breast cancers." In this project, we propose the development of selective self-assembling peptides that form nanofibers via a self-assembling process upon the action of Eyes absent (EYA) enzyme, specific to drug resistance Triple Negative Breast cancer cells (TNBC). The objectives are: Aim 1: Design and synthesize self-assembling peptide substrates for EYA enzymes; Aim 2:Determining the efficacy of peptide substrates for inhibiting TNBC in spheroid 3D cell cultures. The correlation between the enzyme kinetic and the activity of nanostructures for targeting EYA will be evaluated. Aim 3: The apoptosis response of the TNBC cells will be determined. This study will lead to finding the potent peptide substrate and the effective dose for inhibiting TNBC cells with apoptosis cell death.
Date: 2023-08-17/2024-07-31
Creator: Habibi, Neda
System: The UNT Digital Library
CAREER: A Prosthetic Elbow with Network of Soft and Modular Thermo-Active Actuators for Mobility Impaired Patients (open access)

CAREER: A Prosthetic Elbow with Network of Soft and Modular Thermo-Active Actuators for Mobility Impaired Patients

Data management plan for the grant "CAREER: A Prosthetic Elbow with Network of Soft and Modular Thermo-Active Actuators for Mobility Impaired Patients." This NSF Faculty Early Career Development (CAREER) project will develop novel networks of flexible Peltier-based soft actuators designed for rehabilitation.
Date: 2021-10-01/2026-03-31
Creator: Jafari, Amir
System: The UNT Digital Library
New approach for identification pHFO networks to predict epilleptogenesis (open access)

New approach for identification pHFO networks to predict epilleptogenesis

Data management plan for the grant, "New approach for identification pHFO networks to predict epilleptogenesis." About 40% of epilepsy patients fail to control seizures after treatment, and currently there is no treatment that can prevent epilepsy. The goal of this study is to perform multi-scale electrophysiological investigations combine with advanced computational algorithm development to understand the characteristics of the pathological brain networks during the latent period of epilepsy. The findings of this project will lead to a better understanding of the network mechanisms of epileptogenesis and suggest novel approaches to prevent the process of epileptogenesis.
Date: 2022-07-15/2026-06-30
Creator: Li, Lin
System: The UNT Digital Library
Mechanoregulators of Nanoparticle-Cell Interactions at Tissue Interfaces (open access)

Mechanoregulators of Nanoparticle-Cell Interactions at Tissue Interfaces

Data management plan for the grant, "Mechanoregulators of Nanoparticle-Cell Interactions at Tissue Interfaces."
Date: 2023-09-01/2028-07-31
Creator: Meckes, Brian
System: The UNT Digital Library
Modulating 3D Cellular Connectivity Via Spatially-Controlled Programmable Bonding (open access)

Modulating 3D Cellular Connectivity Via Spatially-Controlled Programmable Bonding

Data management plan for the grant "Modulating 3D Cellular Connectivity Via Spatially-Controlled Programmable Bonding." This project seeks to demonstrate proof-of-concept for technology that allows one to systematically place cells on substrates to create complex 3D assemblies with precise control over individual cellular interactions. The technology generated within this proposal will open new avenues for studying multicellular communication pathways, stem cell differentiation, and understanding developmental processes. Spatially-defined cell-cell communication plays a critical role in numerous disease and developmental processes that include osteoarthritic degeneration, cancer metastasis, and organ regeneration.
Date: 2021-09-01/2023-08-31
Creator: Meckes, Brian
System: The UNT Digital Library
Targeted Systemic Delivery of SDF-1 DNA for the Treatment of Chronic Heart Disease (open access)

Targeted Systemic Delivery of SDF-1 DNA for the Treatment of Chronic Heart Disease

Data management plan for the grant, "Targeted Systemic Delivery of SDF-1 DNA for the Treatment of Chronic Heart Disease."
Date: 2023-06-01/2023-07-31
Creator: Won, Youngwook
System: The UNT Digital Library
Child Health and Human Development Extramural Research (open access)

Child Health and Human Development Extramural Research

Data management plan for the grant, "Child Health and Human Development Extramural Research." This study will use the genome-edited human induced pluripotent stem cell (hiPSC) with NOTCH1 knockout to recapitulate the genetic variants of NOTCH1 mutation in the Hypoplastic left heart syndrome (HLHS). It will use advances in the vascularized cardiac organoid directly differentiated from hiPSCs to replay the development and function of cardiomyocytes, endothelial cells, smooth muscle cells, and other cardiac cells in a defined 3D cell culture model by stencil-based micropatterning. It will elucidate the pathogenesis of cardiovascular underdevelopment and dysfunction found in HLHS with NOTCH1 mutation via the NOTCHDELTA/JAG ligand-receptor binding and multicellular crosstalk by single-cell RNA-seq and proteomics analysis.
Date: 2022-09-08/2025-08-31
Creator: Yang, Huaxiao
System: The UNT Digital Library
Optic-nerve-head (ONH) Chips for Glaucomatous Neurodegeneration (open access)

Optic-nerve-head (ONH) Chips for Glaucomatous Neurodegeneration

Data management plan for the grant, "Optic-nerve-head (ONH) Chips for Glaucomatous Neurodegeneration." The most prominent causative risk factor of glaucoma, the leading cause of irreversible blindness worldwide, is elevated intraocular pressure (IOP), which could deform the optic nerve head (ONH) and cause glaucomatous neurodegeneration. However, current glaucoma therapies that focus on lowering IOP do not stop vision loss effectively, and thus there is a pressing need to understand the mechanisms underlying glaucoma pathogenesis. In this project, we will develop a biomimetic 3-D ONH-on-a-chip system that closely mimics the key anatomical and pathophysiological characteristics of the native ONH to study astrocytic mechanisms of glaucoma pathogenesis, a missing link to develop efficacious therapies.
Date: 2022-09-30/2025-05-31
Creator: Yang, Yong
System: The UNT Digital Library