Resource Type

5,594 Matching Results

Results open in a new window/tab.

Experimental and theoretical studies of particle generation afterlaser ablation of copper with background gas at atmosphericpressure (open access)

Experimental and theoretical studies of particle generation afterlaser ablation of copper with background gas at atmosphericpressure

Laser ablation has proven to be an effective method for generating nanoparticles; particles are produced in the laser induced vapor plume during the cooling stage. To understand the in-situ condensation process, a series of time resolved light scattering images were recorded and analyzed. Significant changes in the condensation rate and the shape of the condensed aerosol plume were observed in two background gases, helium and argon. The primary particle shape and size distribution were measured using a transmission electron microscope (TEM), a scanning electron microscope (SEM) and a differential mobility analyzer (DMA). The gas dynamics simulation included nucleation and coagulation within the vapor plume, heat and mass transfer from the vapor plume to the background gas, and heat transfer to the sample. The experimental data and the calculated evolution of the shape of the vapor plume showed the same trend for the spatial distribution of the condensed particles in both background gases. The simulated particle size distribution also qualitatively agreed with the experimental data. It was determined that the laser energy, the physical properties of the background gas (conductivity, diffusivity and viscosity), and the shape of the ablation system (ablation chamber and the layout of the sample) have strong effects …
Date: May 31, 2007
Creator: Wen, Sy-Bor; Mao, Xianglei; Greif, Ralph & Russo, Richard E.
System: The UNT Digital Library
ITER Shape Controller and Transport Simulations (open access)

ITER Shape Controller and Transport Simulations

We currently use the CORSICA integrated modeling code for scenario studies for both the DIII-D and ITER experiments. In these simulations, free- or fixed-boundary equilibria are simultaneously converged with thermal evolution determined from transport models providing temperature and current density profiles. Using a combination of fixed boundary evolution followed by free-boundary calculation to determine the separatrix and coil currents. In the free-boundary calculation, we use the state-space controller representation with transport simulations to provide feedback modeling of shape, vertical stability and profile control. In addition to a tightly coupled calculation with simulator and controller imbedded inside CORSICA, we also use a remote procedure call interface to couple the CORSICA non-linear plasma simulations to the controller environments developed within the Mathworks Matlab/Simulink environment. We present transport simulations using full shape and vertical stability control with evolution of the temperature profiles to provide simulations of the ITER controller and plasma response.
Date: May 31, 2007
Creator: Casper, T A; Meyer, W H; Pearlstein, L D & Portone, A
System: The UNT Digital Library
Zeaxanthin Radical Cation Formation in Minor Light-Harvesting Complexes of Higher Plant Antenna (open access)

Zeaxanthin Radical Cation Formation in Minor Light-Harvesting Complexes of Higher Plant Antenna

Previous work on intact thylakoid membranes showed that transient formation of a zeaxanthin radical cation was correlated with regulation of photosynthetic light-harvesting via energy-dependent quenching. A molecular mechanism for such quenching was proposed to involve charge transfer within a chlorophyll-zeaxanthin heterodimer. Using near infrared (880-1100 nm) transient absorption spectroscopy, we demonstrate that carotenoid (mainly zeaxanthin) radical cation generation occurs solely in isolated minor light-harvesting complexes that bind zeaxanthin, consistent with the engagement of charge transfer quenching therein. We estimated that less than 0.5percent of the isolated minor complexes undergo charge transfer quenching in vitro, whereas the fraction of minor complexes estimated to be engaged in charge transfer quenching in isolated thylakoids was more than 80 times higher. We conclude that minor complexes which bind zeaxanthin are sites of charge transfer quenching in vivo and that they can assume Non-quenching and Quenching conformations, the equilibrium LHC(N)<--> LHC(Q) of which is modulated by the transthylakoid pH gradient, the PsbS protein, and protein-protein interactions.
Date: January 31, 2008
Creator: Avenson, Thomas H.; Ahn, Tae Kyu; Zigmantas, Donatas; Niyogi, Krishna K.; Li, Zhirong; Ballottari, Matteo et al.
System: The UNT Digital Library
Optical alignment techniques for line-imaging velocity interferometry and line-imaging self-emulsion of targets at the National Ignition Facility (NIF) (open access)

Optical alignment techniques for line-imaging velocity interferometry and line-imaging self-emulsion of targets at the National Ignition Facility (NIF)

The National Ignition Facility (NIF) requires optical diagnostics for measuring shock velocities in shock physics experiments. The Velocity Interferometer System for Any Reflector (VISAR) measures shock velocities, shock breakout times, and emission of 1- to 5-mm targets at a location remote to the NIF target chamber. Three optical systems using the same vacuum chamber port each have a total track of 69 feet. All optical lenses are on kinematic mounts or sliding rails, enabling pointing accuracy of the optical axis to be checked. Counter-propagating laser beams (orange and red) align these diagnostics to a listing of tolerances. The orange alignment laser is introduced at the entrance to the two-level interferometer table and passes forward through the optical systems to the recording streak cameras. The red alignment laser is introduced in front of the recording streak cameras and passes in the reverse direction through all optical elements, out of the interferometer table, eventually reaching the target chamber center. Red laser wavelength is selected to be at the 50 percent reflection point of a special beamsplitter used to separate emission light from the Doppler-shifted interferometer light. Movable aperture cards, placed before and after lens groups, show the spread of alignments spots created …
Date: August 31, 2007
Creator: Robert M. Malone, Brent C. Frogget, Morris I. Kaufman, Thomas W. Tunnell, Robert L. Guyton, Imants P. Reinbachs, Phillip W. Watts, et al.
System: The UNT Digital Library
Leakage of CO2 from geologic storage: Role of secondary accumulation at shallow depth (open access)

Leakage of CO2 from geologic storage: Role of secondary accumulation at shallow depth

Geologic storage of CO2 can be a viable technology forreducing atmospheric emissions of greenhouse gases only if it can bedemonstrated that leakage from proposed storage reservoirs and associatedhazards are small or can be mitigated. Risk assessment must evaluatepotential leakage scenarios and develop a rational, mechanisticunderstanding of CO2 behavior during leakage. Flow of CO2 may be subjectto positive feedbacks that could amplify leakage risks and hazards,placing a premium on identifying and avoiding adverse conditions andmechanisms. A scenario that is unfavorable in terms of leakage behavioris formation of a secondary CO2 accumulation at shallow depth. This paperdevelops a detailed numerical simulation model to investigate CO2discharge from a secondary accumulation, and evaluates the role ofdifferent thermodynamic and hydrogeologic conditions. Our simulationsdemonstrate self-enhancing as well as self-limiting feedbacks.Condensation of gaseous CO2, 3-phase flow of aqueous phase -- liquid CO2-- gaseous CO2, and cooling from Joule-Thomson expansion and boiling ofliquid CO2 are found to play important roles in the behavior of a CO2leakage system. We find no evidence that a subsurface accumulation of CO2at ambient temperatures could give rise to a high-energy discharge, aso-called "pneumatic eruption."
Date: May 31, 2007
Creator: Pruess, K.
System: The UNT Digital Library
Mercuric Iodide Photocell Technology for Room Temperature Readout of Scintillators (open access)

Mercuric Iodide Photocell Technology for Room Temperature Readout of Scintillators

Mercuric iodide (HgI2) is a well known material for the direct detection of gamma rays; however, the largest volume achievable is limited by thickness of the detector, which needs to be a small fraction of the average trapping length for electrons. We are reporting here preliminary results in using HgI2 crystals to fabricate photocells used in the readout of various scintillators. The optical spectral response and efficiency of these photocells were measured and will be reported. Preliminary nuclear response from a HgI2 photocell that was optically matched to a Ce3+ :LaBr3 scintillator will also be presented and discussed. Further improvements will be sought by optimizing the transparent contact technology.
Date: August 31, 2007
Creator: al., Warnick Kernan et
System: The UNT Digital Library
Comparison between S/1 and R/1 tests and damage density vs. fluence (rho(phi)) results for unconditioned and sub-nanosecond laser-conditioned KD2PO4 crystals (open access)

Comparison between S/1 and R/1 tests and damage density vs. fluence (rho(phi)) results for unconditioned and sub-nanosecond laser-conditioned KD2PO4 crystals

We present S/1 and R/1 test results on unconditioned and 355 nm (3{omega}), 500 ps laser conditioned DKDP. We find up to {approx}2.5X improvement in fluence in the S/1 performance after 3{omega}, 500 ps conditioning to 5 J/cm{sup 2}. For the first time, we observe a shift to higher fluences in the R/1 results for DKDP at 3{omega}, 7 ns due to 500 ps laser conditioning. The S/1 results are compared to {rho}({phi}) results previously measured on the same DKDP crystal [1]. A consistent behavior in fluence was found between the S/1 and {rho}({phi}) results for unconditioned and 500 ps conditioned DKDP. We were successful at using Poisson statistics to derive a connection between the S/1 and {rho}({phi}) results that could be tested with our data sets by trying to predict the shape of the {rho}({phi}) curve. The value for the power dependence on fluence of {rho}({phi}) derived from the S/1 data was {approx}11 {+-} 50%. The results presented and discussed here imply a strong correlation between the damage probability (S/1) test and {rho}({phi}). We find a consistent description of the two test types in terms of a power law {rho}({phi}) and that this basic shape held for all cases, …
Date: October 31, 2007
Creator: Adams, J. J.; Jarboe, J.; Feit, M. & Hackel, R.
System: The UNT Digital Library
The morphologies of breast cancer cell lines in three-dimensionalassays correlate with their profiles of gene expression (open access)

The morphologies of breast cancer cell lines in three-dimensionalassays correlate with their profiles of gene expression

3D cell cultures are rapidly becoming the method of choice for the physiologically relevant modeling of many aspects of non-malignant and malignant cell behavior ex vivo. Nevertheless, only a limited number of distinct cell types have been evaluated in this assay to date. Here we report the first large scale comparison of the transcriptional profiles and 3D cell culture phenotypes of a substantial panel of human breast cancer cell lines. Each cell line adopts a colony morphology of one of four main classes in 3D culture. These morphologies reflect, at least in part, the underlying gene expression profile and protein expression patterns of the cell lines, and distinct morphologies were also associated with tumor cell invasiveness and with cell lines originating from metastases. We further demonstrate that consistent differences in genes encoding signal transduction proteins emerge when even tumor cells are cultured in 3D microenvironments.
Date: January 31, 2007
Creator: Kenny, Paraic A.; Lee, Genee Y.; Myers, Connie A.; Neve, RichardM.; Semeiks, Jeremy R.; Spellman, Paul T. et al.
System: The UNT Digital Library
VOLATILE SILICON COMPLEXES OF ETTOPORPHY-RIN I (open access)

VOLATILE SILICON COMPLEXES OF ETTOPORPHY-RIN I

The presence of several homologous series of porphyrins have been demonstrated in some oil shale rocks, shale oils, and petroleums. However, the application of microanalytical techniques (i.e., mass spectrometry and gas chromatography) to structure determination has been limited due to the low volatility of the porphyrin components. The authors report the synthesis of several novel Si(IV) etioporphyrin I derivatives and the effects that their various additional silicon ligands have on porphyrin volatility as measured by gas chromatography at normal pressure.
Date: July 31, 1967
Creator: Boylan, D. B. & Calvin, M.
System: The UNT Digital Library
Reliable and Repeatable Characterization of Optical Streak Cameras (open access)

Reliable and Repeatable Characterization of Optical Streak Cameras

Optical streak cameras are used as primary diagnostics for a wide range of physics and laser experiments at facilities such as the National Ignition Facility (NIF). To meet the strict accuracy requirements needed for these experiments, the systematic nonlinearities of the streak cameras (attributed to nonlinearities in the optical and electrical components that make up the streak camera system) must be characterized. In some cases the characterization information is used as a guide to help determine how experiment data should be taken. In other cases, the characterization data are applied to the raw data images to correct for the nonlinearities. In order to characterize an optical streak camera, a specific set of data is collected, where the response to defined inputs are recorded. A set of analysis software routines has been developed to extract information such as spatial resolution, dynamic range, and temporal resolution from this data set. The routines are highly automated, requiring very little user input and thus provide very reliable and repeatable results that are not subject to interpretation. An emphasis on quality control has been placed on these routines due to the high importance of the camera characterization information.
Date: October 31, 2008
Creator: Michael Charest Jr., Peter Torres III, Christopher Silbernagel, and Daniel Kalantar
System: The UNT Digital Library
Causes of Ocean Surface temperature Changes in Atlantic andPacific Topical Cyclogenesis Regions (open access)

Causes of Ocean Surface temperature Changes in Atlantic andPacific Topical Cyclogenesis Regions

Previous research has identified links between changes in sea surface temperature (SST) and hurricane intensity. We use climate models to study the possible causes of SST changes in Atlantic and Pacific tropical cyclogenesis regions. The observed SST increases in these regions range from 0.32 to 0.67 C over the 20th century. The 22 climate models examined here suggest that century-timescale SST changes of this magnitude cannot be explained solely by unforced variability of the climate system, even under conservative assumptions regarding the magnitude of this variability. Model simulations that include external forcing by combined anthropogenic and natural factors are generally capable of replicating observed SST changes in both tropical cyclogenesis regions.
Date: January 31, 2006
Creator: Santer, B. D.; Wigley, T. M. L.; Gleckler, P. J.; Bonfils, C.; Wehner, M. F.; AchutaRao, K. et al.
System: The UNT Digital Library
A Generalized Eigensolver based on Smoothed Aggregation (GES-SA) for Initializing Smoothed Aggregation Multigrid (SA) (open access)

A Generalized Eigensolver based on Smoothed Aggregation (GES-SA) for Initializing Smoothed Aggregation Multigrid (SA)

Consider the linear system Ax = b, where A is a large, sparse, real, symmetric, and positive definite matrix and b is a known vector. Solving this system for unknown vector x using a smoothed aggregation multigrid (SA) algorithm requires a characterization of the algebraically smooth error, meaning error that is poorly attenuated by the algorithm's relaxation process. For relaxation processes that are typically used in practice, algebraically smooth error corresponds to the near-nullspace of A. Therefore, having a good approximation to a minimal eigenvector is useful to characterize the algebraically smooth error when forming a linear SA solver. This paper discusses the details of a generalized eigensolver based on smoothed aggregation (GES-SA) that is designed to produce an approximation to a minimal eigenvector of A. GES-SA might be very useful as a standalone eigensolver for applications that desire an approximate minimal eigenvector, but the primary aim here is for GES-SA to produce an initial algebraically smooth component that may be used to either create a black-box SA solver or initiate the adaptive SA ({alpha}SA) process.
Date: May 31, 2007
Creator: Brezina, M; Manteuffel, T; McCormick, S; Ruge, J; Sanders, G & Vassilevski, P S
System: The UNT Digital Library
Michrochannel plate for position sensitive alpha particle detection (open access)

Michrochannel plate for position sensitive alpha particle detection

This paper will describe the use of a microchannel plate (MCP) as the associated particle detector on a sealed tube neutron generator. The generator produces neutrons and associated alpha particles for use as a probe to locate and identify hidden explosives in associated particle imaging (API). The MCP measures the position in two dimensions and precise timing of the incident alpha particle, information which is then used to calculate the emission time and direction of the corresponding neutron. The MCP replaces the position-sensitive photomultipler tube (PSPMT) which, until recently, had been the only detector available for measuring position and timing for alpha particles in neutron generator applications. Where the PSPMT uses charge division for generating position information, a process that requires a first order correction to each pulse, the MCP uses delay-line timing, which requires no correction. The result is a device with an order of magnitude improvement in both position resolution and timing compared to the PSPMT. Hardware and software development and the measurements made to characterize the MCP for API applications are described.
Date: August 31, 2007
Creator: Tinsley, Paul Hurley and James
System: The UNT Digital Library
Electromigration-induced plasticity and texture in Cu interconnects (open access)

Electromigration-induced plasticity and texture in Cu interconnects

Plastic deformation has been observed in damascene Cu interconnect test structures during an in-situ electromigration experiment and before the onset of visible microstructural damage (ie. voiding) using a synchrotron technique of white beam X-ray microdiffraction. We show here that the extent of this electromigration-induced plasticity is dependent on the texture of the Cu grains in the line. In lines with strong <111> textures, the extent of plastic deformation is found to be relatively large compared to our plasticity results in the previous study [1] using another set of Cu lines with weaker textures. This is consistent with our earlier observation that the occurrence of plastic deformation in a given grain can be strongly correlated with the availability of a <112> direction of the crystal in the proximity of the direction of the electron flow in the line (within an angle of 10{sup o}). In <111> out-of-plane oriented grains in a damascene interconnect scheme, the crystal plane facing the sidewall tends to be a {l_brace}110{r_brace} plane,[2-4] so as to minimize interfacial energy. Therefore, it is deterministic rather than probabilistic that the <111> grains will have a <112> direction nearly parallel to the direction of electron flow. Thus, strong <111> textures lead …
Date: October 31, 2007
Creator: Source, Advanced Light; Tamura, Nobumichi; Budiman, A. S.; Hau-Riege, C.S.; Besser, P. R.; Marathe, A. et al.
System: The UNT Digital Library
H(curl) Auxiliary Mesh Preconditioning (open access)

H(curl) Auxiliary Mesh Preconditioning

This paper analyzes a two-level preconditioning scheme for H(curl) bilinear forms. The scheme utilizes an auxiliary problem on a related mesh that is more amenable for constructing optimal order multigrid methods. More specifically, we analyze the case when the auxiliary mesh only approximately covers the original domain. The latter assumption is important since it allows for easy construction of nested multilevel spaces on regular auxiliary meshes. Numerical experiments in both two and three space dimensions illustrate the optimal performance of the method.
Date: August 31, 2006
Creator: Kolev, T V; Pasciak, J E & Vassilevski, P S
System: The UNT Digital Library
RADIATION HEAT TRANSFER ENVIRONMENT IN FIRE AND FURNACE TESTS OF RADIOACTIVE MATERIALS PAKCAGES (open access)

RADIATION HEAT TRANSFER ENVIRONMENT IN FIRE AND FURNACE TESTS OF RADIOACTIVE MATERIALS PAKCAGES

The Hypothetical Accident Conditions (HAC) sequential test of radioactive materials packages includes a thermal test to confirm the ability of the package to withstand a transportation fire event. The test specified by the regulations (10 CFR 71) consists of a 30 minute, all engulfing, hydrocarbon fuel fire, with an average flame temperature of at least 800 C. The requirements specify an average emissivity for the fire of at least 0.9, which implies an essentially black radiation environment. Alternate test which provide equivalent total heat input at the 800 C time averaged environmental temperature may also be employed. When alternate tests methods are employed, such as furnace or gaseous fuel fires, the equivalence of the radiation environment may require justification. The effects of furnace and open confinement fire environments are compared with the regulatory fire environment, including the effects of gases resulting from decomposition of package overpack materials. The results indicate that furnace tests can produce the required radiation heat transfer environment, i.e., equivalent to the postulated pool fire. An open enclosure, with transparent (low emissivity) fire does not produce an equivalent radiation environment.
Date: December 31, 2008
Creator: Smith, A
System: The UNT Digital Library
Bridging the Pressure Gap in Water and Hydroxyl Chemistry on MetalSurfaces: the Cu(110) case (open access)

Bridging the Pressure Gap in Water and Hydroxyl Chemistry on MetalSurfaces: the Cu(110) case

None
Date: August 31, 2007
Creator: Andersson, K.; Ketteler, G.; Hendrik, B.; Yamamoto, S.; Ogasawara, H.; Pettersson, L.G.M. et al.
System: The UNT Digital Library
Publication and Protection of Sensitive Site Information in a Grid Infrastructure (open access)

Publication and Protection of Sensitive Site Information in a Grid Infrastructure

In order to create a successful grid infrastructure, sites and resource providers must be able to publish information about their underlying resources and services. This information makes it easier for users and virtual organizations to make intelligent decisions about resource selection and scheduling, and can be used by the grid infrastructure for accounting and troubleshooting services. However, such an outbound stream may include data deemed sensitive by a resource-providing site, exposing potential security vulnerabilities or private user information to the world at large, including malicious entities. This study analyzes the various vectors of information being published from sites to grid infrastructures. In particular, it examines the data being published to, and collected by the Open Science Grid, including resource selection, monitoring, accounting, troubleshooting, logging and site verification data. We analyze the risks and potential threat models posed by the publication and collection of such data. We also offer some recommendations and best practices for sites and grid infrastructures to manage and protect sensitive data.
Date: March 31, 2008
Creator: Cholia, Shreyas; Cholia, Shreyas & Porter, R. Jefferson
System: The UNT Digital Library
Electrokinetic Hydrogen Generation from Liquid WaterMicrojets (open access)

Electrokinetic Hydrogen Generation from Liquid WaterMicrojets

We describe a method for generating molecular hydrogen directly from the charge separation effected via rapid flow of liquid water through a metal orifice, wherein the input energy is the hydrostatic pressure times the volume flow rate. Both electrokinetic currents and hydrogen production rates are shown to follow simple equations derived from the overlap of the fluid velocity gradient and the anisotropic charge distribution resulting from selective adsorption of hydroxide ions to the nozzle surface. Pressure-driven fluid flow shears away the charge balancing hydronium ions from the diffuse double layer and carries them out of the aperture. Downstream neutralization of the excess protons at a grounded target electrode produces gaseous hydrogen molecules. The hydrogen production efficiency is currently very low (ca. 10-6) for a single cylindrical jet, but can be improved with design changes.
Date: May 31, 2007
Creator: Duffin, Andrew M. & Saykally, Richard J.
System: The UNT Digital Library
PRIME VALUE METHOD TO PRIORITIZE RISK HANDLING STRATEGIES (open access)

PRIME VALUE METHOD TO PRIORITIZE RISK HANDLING STRATEGIES

Funding for implementing risk handling strategies typically is allocated according to either the risk-averse approach (the worst risk first) or the cost-effective approach (the greatest risk reduction per implementation dollar first). This paper introduces a prime value approach in which risk handling strategies are prioritized according to how nearly they meet the goals of the organization that disburses funds for risk handling. The prime value approach factors in the importance of the project in which the risk has been identified, elements of both risk-averse and cost-effective approaches, and the time period in which the risk could happen. This paper also presents a prioritizer spreadsheet, which employs weighted criteria to calculate a relative rank for the handling strategy of each risk evaluated.
Date: October 31, 2007
Creator: Noller, D
System: The UNT Digital Library
4-D XRD for strain in many grains using triangulation (open access)

4-D XRD for strain in many grains using triangulation

Determination of the strains in a polycrystalline materialusing 4-D XRD reveals sub-grain and grain-to-grain behavior as a functionof stress. Here 4-D XRD involves an experimental procedure usingpolychromatic micro-beam X-radiation (micro-Laue) to characterizepolycrystalline materials in spatial location as well as with increasingstress. The in-situ tensile loading experiment measured strain in a modelaluminum-sapphire metal matrix composite using the Advanced Light Source,Beam-line 7.3.3. Micro-Laue resolves individual grains in thepolycrystalline matrix. Results obtained from a list of grains sorted bycrystallographic orientation depict the strain states within and amongindividual grains. Locating the grain positions in the planeperpendicular to the incident beam is trivial. However, determining theexact location of grains within a 3-D space is challenging. Determiningthe depth of the grains within the matrix (along the beam direction)involved a triangulation method tracing individual rays that producespots on the CCD back to the point of origin. Triangulation wasexperimentally implemented by simulating a 3-D detector capturingmultiple diffraction images while increasing the camera to sampledistance. Hence by observing the intersection of rays from multiple spotsbelonging to the corresponding grain, depth is calculated. Depthresolution is a function of the number of images collected, grain to beamsize ratio, and the pixel resolution of the CCD. The 4DXRD methodprovides grain morphologies, strain …
Date: December 31, 2006
Creator: Bale, Hrishikesh A.; Hanan, Jay C. & Tamura, Nobumichi
System: The UNT Digital Library
ALUMINUM HYDRIDE: A REVERSIBLE MATERIAL FOR HYDROGEN STORAGE (open access)

ALUMINUM HYDRIDE: A REVERSIBLE MATERIAL FOR HYDROGEN STORAGE

Hydrogen storage is one of the greatest challenges for implementing the ever sought hydrogen economy. Here we report a novel cycle to reversibly form high density hydrogen storage materials such as aluminium hydride. Aluminium hydride (AlH{sub 3}, alane) has a hydrogen storage capacity of 10.1 wt% H{sub 2}, 149 kg H{sub 2}/m{sup 3} volumetric density and can be discharged at low temperatures (< 100 C). However, alane has been precluded from use in hydrogen storage systems because of the lack of practical regeneration methods; the direct hydrogenation of aluminium to form AlH{sub 3} requires over 10{sup 5} bars of hydrogen pressure at room temperature and there are no cost effective synthetic means. Here we show an unprecedented reversible cycle to form alane electrochemically, using alkali alanates (e.g. NaAlH{sub 4}, LiAlH{sub 4}) in aprotic solvents. To complete the cycle, the starting alanates can be regenerated by direct hydrogenation of the dehydrided alane and the alkali hydride being the other compound formed in the electrochemical cell. The process of forming NaAlH{sub 4} from NaH and Al is well established in both solid state and solution reactions. The use of adducting Lewis bases is an essential part of this cycle, in the isolation …
Date: December 31, 2008
Creator: Fewox, C; Ragaiy Zidan, R & Brenda Garcia-Diaz, B
System: The UNT Digital Library
Strange Particle Production in $p+p$ Collisions at $\sqrt{s}$= 200GeV (open access)

Strange Particle Production in $p+p$ Collisions at $\sqrt{s}$= 200GeV

We present strange particle spectra and yields measured atmid-rapidity in sqrt text s=200 GeV proton-proton (p+p) collisions atRHIC. We find that the previously observed universal transverse mass(mathrm mT \equiv\sqrt mathrm p_T 2+\mathrm m2) scaling of hadronproduction in p+p collisions seems to break down at higher \mt and thatthere is a difference in the shape of the \mt spectrum between baryonsand mesons. We observe mid-rapidity anti-baryon to baryon ratios nearunity for Lambda and Xi baryons and no dependence of the ratio ontransverse momentum, indicating that our data do not yet reach thequark-jet dominated region. We show the dependence of the mean transversemomentum (\mpt) on measured charged particle multiplicity and on particlemass and infer that these trends are consistent with gluon-jet dominatedparticle production. The data are compared to previous measurements fromCERN-SPS, ISR and FNAL experiments and to Leading Order (LO) and Next toLeading order (NLO) string fragmentation model predictions. We infer fromthese comparisons that the spectral shapes and particle yields from $p+p$collisions at RHIC energies have large contributions from gluon jetsrather than quark jets.
Date: July 31, 2006
Creator: Abelev, B. I.; Adams, J.; Aggarwal, M. M.; Ahammed, Z.; Amonett, J.; Anderson, B. D. et al.
System: The UNT Digital Library
Curved mesh generation and mesh refinement using Lagrangian solid mechanics (open access)

Curved mesh generation and mesh refinement using Lagrangian solid mechanics

We propose a method for generating well-shaped curved unstructured meshes using a nonlinear elasticity analogy. The geometry of the domain to be meshed is represented as an elastic solid. The undeformed geometry is the initial mesh of linear triangular or tetrahedral elements. The external loading results from prescribing a boundary displacement to be that of the curved geometry, and the final configuration is determined by solving for the equilibrium configuration. The deformations are represented using piecewise polynomials within each element of the original mesh. When the mesh is sufficiently fine to resolve the solid deformation, this method guarantees non-intersecting elements even for highly distorted or anisotropic initial meshes. We describe the method and the solution procedures, and we show a number of examples of two and three dimensional simplex meshes with curved boundaries. We also demonstrate how to use the technique for local refinement of non-curved meshes in the presence of curved boundaries.
Date: December 31, 2008
Creator: Persson, P.-O. & Peraire, J.
System: The UNT Digital Library