Resource Type

875 Matching Results

Results open in a new window/tab.

The Cost of Helium Refrigerators and Coolers for SuperconductingDevices as a Function of Cooling at 4 K (open access)

The Cost of Helium Refrigerators and Coolers for SuperconductingDevices as a Function of Cooling at 4 K

This paper is an update of papers written in 1991 and in1997 by Rod Byrns and this author concerning estimating the cost ofrefrigeration for superconducting magnets and cavities. The actual costsof helium refrigerators and coolers (escalated to 2007 dollars) areplotted and compared to a correlation function. A correlation functionbetween cost and refrigeration at 4.5 K is given. The capital cost oflarger refrigerators (greater than 10 W at 4.5 K) is plotted as afunction of 4.5-K cooling. The cost of small coolers is plotted as afunction of refrigeration available at 4.2 K. A correlation function forestimating efficiency (percent of Carnot) of both types of refrigeratorsis also given.
Date: August 27, 2007
Creator: Green, Michael A.
System: The UNT Digital Library
ATF2 High Availability Power Supplies (open access)

ATF2 High Availability Power Supplies

ATF2 is an accelerator test facility modeled after the final focus beamline envisioned for the ILC. By the end of 2008, KEK plans to commission the ATF2 [1]. SLAC and OCEM collaborated on the design of 38 power systems for beamline magnets. The systems range in output power from 1.5 kW to 6 kW. Since high availability is essential for the success of the ILC, Collaborators employed an N+1 modular approach, allowing for redundancy and the use of a single power module rating. This approach increases the availability of the power systems. Common power modules reduces inventory and eases maintenance. Current stability requirements are as tight as 10 ppm. A novel, SLAC designed 20-bit Ethernet Power Supply Controller provides the required precision current regulation. In this paper, Collaborators present the power system design, the expected reliability, fault immunity features, and the methods for satisfying the control and monitoring challenges. Presented are test results and the status of the power systems.
Date: June 27, 2008
Creator: Bellomo, A; de Lira, C.; Lam, B.; MacNair, D. & White, G.
System: The UNT Digital Library
Comment on "The shape and composition of interstellar silicate grains" (open access)

Comment on "The shape and composition of interstellar silicate grains"

In the paper entitled 'The shape and composition of interstellar silicate grains' (A & A, 462, 667-676 (2007)), Min et al. explore non-spherical grain shape and composition in modeling the interstellar 10 and 20 {micro}m extinction features. This progression towards more realistic models is vitally important to enabling valid comparisons between dust observations and laboratory measurements. Min et al. proceed to compare their model results with GEMS (glass with embedded metals and sulfides) from IDPs (interplanetary dust particles) and to discuss the nature and origin of GEMS. Specifically, they evaluate the hypothesis of Bradley (1994) that GEMS are interstellar (IS) amorphous silicates. From a comparison of the mineralogy, chemical compositions, and infrared (IR) spectral properties of GEMS with their modeling results, Min et al. conclude: 'GEMS are, in general, not unprocessed leftovers from the diffuse ISM'. This conclusion is based, however, on erroneous and incomplete GEMS data. It is important to clarify first that Bradley (1994) never proposed that GEMS are unprocessed leftovers from the diffuse ISM, nor did he suggest that individual subnanogram mass GEMS are a representative sampling of the enormous mass of silicates in the diffuse ISM. Bradley (1994) simply showed that GEMS properties are consistent with …
Date: September 27, 2007
Creator: Bradley, J P & Ishii, H
System: The UNT Digital Library
L-Shell Spectroscopy of Au as a Temperature Diagnostic Tool (open access)

L-Shell Spectroscopy of Au as a Temperature Diagnostic Tool

In order to develop plasma diagnostic for reduced-size hot hohlraums under laser irradiation, they have studied the L-shell emission from highly charged gold ions in the SuperEBIT electron beam ion trap. The resolving power necessary to identify emission features from individual charge states in a picket fence pattern has been estimated, and the observed radiation features have been compared with atomic structure calculations. They find that the strong 3d{sub 5/2} {yields} 2p{sub 3/2} emission features are particularly useful in determining the charge state distribution and average ion charge <Z>, which are strongly sensitive to the electron temperature.
Date: March 27, 2008
Creator: Trabert, E; Hansen, S B; Beiersdorfer, P; Brown, G V; Widmann, K & Chung, H K
System: The UNT Digital Library
A velocity map imaging spectrometer for electron?ion and ion?ion coincidence experiments with synchrotron radiation (open access)

A velocity map imaging spectrometer for electron?ion and ion?ion coincidence experiments with synchrotron radiation

We have built a velocity imaging (VMI) spectrometer optimized for angle-resolved photoionization experiments with synchrotron radiation (SR) in the VUV and soft X-tay range. The spectrometer is equiped with four electrostatic lenses that focus the charged photoionization products onto a position-sensitive multi-hit delay-line anode. The use of two additional electrostatic lens elements as compared to the standard design of Eppink and Parker [T.J.B. Eppink and D.H. Parker, Rev. Sci. Instrum. 68 (1997) 3477]provides better focusing of an extended interaction region, which is crucial for most SR applications. Furthermore, the apparatus is equipped with a second micro-channel plate detector opposite to the VMI spectrometer, enabling electron-ion coincidence experiments and thereby mass-resolved ion spectroscopy independent of the time structure of the synchrotron radiation. First results for the photofragmentation of CO2 molecules are presented.
Date: April 27, 2007
Creator: Lawrence Berkeley National Laboratory. Advanced Light Source.
System: The UNT Digital Library
Measuring the Repassivation Potential of Alloy 22 Using the Potentiodynamic - Galvanostatic - Potentiostatic Method (open access)

Measuring the Repassivation Potential of Alloy 22 Using the Potentiodynamic - Galvanostatic - Potentiostatic Method

Traditionally, the susceptibility of Alloy 22 (N06022) to suffer crevice corrosion has been measured using the Cyclic Potentiodynamic Polarization (CPP) technique (ASTM G 61). When the alloy is not very susceptible to crevice corrosion, the values of repassivation potential obtained using the CPP technique are not highly reproducible. To circumvent the large uncertainty in the values of the repassivation potential by the CPP method, the repassivation potential of Alloy 22 may be measured using a slower method that combines sequentially potentiodynamic, galvanostatic and potentiostatic treatments (this method is called the Tsujikawa-Hisamatsu Electrochemical or THE method). In the THE method the anodic charge is applied to the specimen in a more controlled manner, which avoids driving the alloy to transpassivity and therefore results in more reproducible repassivation potential values. Results using THE method under various testing conditions are presented. A new standard has been prepared for ASTM balloting for the THE method. The round robin matrix results are also discussed.
Date: April 27, 2007
Creator: Evans, K J & Rebak, R B
System: The UNT Digital Library
Using Plasma Physics to Weigh the Photon (open access)

Using Plasma Physics to Weigh the Photon

None
Date: June 27, 2007
Creator: Ryutov, D
System: The UNT Digital Library
Near-Edge X-ray Absorption Fine Structure Spectroscopy of Diamondoid Thiol Monolayers on Gold (open access)

Near-Edge X-ray Absorption Fine Structure Spectroscopy of Diamondoid Thiol Monolayers on Gold

Diamondoids, hydrocarbon molecules with cubic-diamond-cage structures, have unique properties with potential value for nanotechnology. The availability and ability to selectively functionalize this special class of nanodiamond materials opens new possibilities for surface-modification, for high-efficiency field emitters in molecular electronics, as seed crystals for diamond growth, or as robust mechanical coatings. The properties of self-assembled monolayers (SAMs) of diamondoids are thus of fundamental interest for a variety of emerging applications. This paper presents the effects of thiol substitution position and polymantane order on diamondoid SAMs on gold using near-edge X-ray absorption fine structure spectroscopy (NEXAFS) and X-ray photoelectron spectroscopy (XPS). A framework to determine both molecular tilt and twist through NEXAFS is presented and reveals highly ordered diamondoid SAMs, with the molecular orientation controlled by the thiol location. C 1s and S 2p binding energies are lower in adamantane thiol than alkane thiols on gold by 0.67 {+-} 0.05 eV and 0.16 {+-} 0.04 eV respectively. These binding energies vary with diamondoid monolayer structure and thiol substitution position, consistent with different amounts of steric strain and electronic interaction with the substrate. This work demonstrates control over the assembly, in particular the orientational and electronic structure, providing a flexible design of surface …
Date: November 27, 2007
Creator: Willey, T. M.; Fabbri, J.; Lee, J. I.; Schreiner, P.; Fokin, A. A.; Tkachenko, B. A. et al.
System: The UNT Digital Library
High Harmonic Generation for N2 and CO2 beyond the Two-point Model (open access)

High Harmonic Generation for N2 and CO2 beyond the Two-point Model

None
Date: February 27, 2008
Creator: Guhr, M.; McFarland, B.K.; Farrell, J.P.; Bucksbaum, P.H. & /SLAC, PULSE /SLAC
System: The UNT Digital Library
Microbunching Instability in a Chicane: Two-Dimensional Mean Field Treatment (open access)

Microbunching Instability in a Chicane: Two-Dimensional Mean Field Treatment

We study the microbunching instability in a bunch compressor by a parallel code with some improved numerical algorithms. The two-dimensional charge/current distribution is represented by a Fourier series, with coefficients determined through Monte Carlo sampling over an ensemble of tracked points. This gives a globally smooth distribution with low noise. The field equations are solved accurately in the lab frame using retarded potentials and a novel choice of integration variables that eliminates singularities. We apply the scheme with parameters for the first bunch compressor system of FERMI{at}Elettra, with emphasis on the amplification of a perturbation at a particular wavelength. Gain curves agree with those of the linearized Vlasov model at long wavelengths, but show some deviation at the smallest wavelengths treated.
Date: January 27, 2009
Creator: Bassi, G.; Ellison, James A.; Heinemann, Klaus & Warnock, Robert
System: The UNT Digital Library
Simulation Studies On The Vertical Emittance Growth At The Existing ATF Extraction Beamline (open access)

Simulation Studies On The Vertical Emittance Growth At The Existing ATF Extraction Beamline

Significant beam intensity-dependence of the vertical emittance growth was experimentally observed at the Accelerator Test Facility (ATF) at KEK extraction beamline. This paper presents the simulations of possible vertical emittance growth sources, particularly in the extraction channel, where the magnets are shared by both the ATF extraction beamline and its damping ring. The vertical emittance growth is observed in the simulations by changing the beam orbit in the extraction channel, even with all optics corrections. The possible reasons for the experimentally observed dependence of the vertical emittance growth on the beam intensity are also discussed. An experiment to measure the emittance versus beam orbit at the existing ATF extraction beamline is on-going led by the European colleagues.
Date: June 27, 2008
Creator: Zhou, F.; Amann, J.; Seletskiy, S.; Seryi, A.; Spencer, C.M. & Woodley, M.D.
System: The UNT Digital Library
Electrokinetic coupling in unsaturated porous media (open access)

Electrokinetic coupling in unsaturated porous media

We consider a charged porous material that is saturated bytwo fluid phases that are immiscible and continuous on the scale of arepresentative elementary volume. The wetting phase for the grains iswater and the nonwetting phase is assumed to be an electricallyinsulating viscous fluid. We use a volume-averaging approach to derivethe linear constitutive equations for the electrical current density aswell as the seepage velocities of the wetting and nonwetting phases onthe scale of a representative elementary volume. These macroscopicconstitutive equations are obtained by volume-averaging Ampere's lawtogether with the Nernst Planck equation and the Stokes equations. Thematerial properties entering the macroscopic constitutive equations areexplicitly described as functions of the saturation of the water phase,the electrical formation factor, and parameters that describe thecapillary pressure function, the relative permeability function, and thevariation of electrical conductivity with saturation. New equations arederived for the streaming potential and electro-osmosis couplingcoefficients. A primary drainage and imbibition experiment is simulatednumerically to demonstrate that the relative streaming potential couplingcoefficient depends not only on the water saturation, but also on thematerial properties of the sample, as well as the saturation history. Wealso compare the predicted streaming potential coupling coefficients withexperimental data from four dolomite core samples. Measurements on thesesamples include electrical …
Date: February 27, 2007
Creator: Revil, A.; Linde, N.; Cerepi, A.; Jougnot, D.; Matthai, S. & Finsterle, S.
System: The UNT Digital Library
On the transport of emulsions in porous media (open access)

On the transport of emulsions in porous media

Emulsions appear in many subsurface applications includingbioremediation, surfactant-enhanced remediation, and enhancedoil-recovery. Modeling emulsion transport in porous media is particularlychallenging because the rheological and physical properties of emulsionsare different from averages of the components. Current modelingapproaches are based on filtration theories, which are not suited toadequately address the pore-scale permeability fluctuations and reductionof absolute permeability that are often encountered during emulsiontransport. In this communication, we introduce a continuous time randomwalk based alternative approach that captures these unique features ofemulsion transport. Calculations based on the proposed approach resultedin excellent match with experimental observations of emulsionbreakthrough from the literature. Specifically, the new approach explainsthe slow late-time tailing behavior that could not be fitted using thestandard approach. The theory presented in this paper also provides animportant stepping stone toward a generalizedself-consistent modeling ofmultiphase flow.
Date: June 27, 2007
Creator: Cortis, Andrea & Ghezzehei, Teamrat A.
System: The UNT Digital Library
Studies of Impurity Assimilation During Massive Argon Gas Injection in DIII-D (open access)

Studies of Impurity Assimilation During Massive Argon Gas Injection in DIII-D

Fast shutdown of discharges using massive gas injection (MGI) is a promising technique for reducing tokamak wall damage during disruptions [1]. An outstanding concern, however, is the generation of runaway electrons (RE) during the shutdown. Although RE formation observed during MGI in present-day experiments is quite small (typically <1% of the main plasma current I{sub p} in DIII-D), it is thought that even this small RE current could be amplified to significant levels in reactor-scale tokamaks such as ITER [2]. It is expected that complete collisional suppression of any potential RE amplification during the CQ can be achieved for suppression parameters {gamma}{sub crit} {triple_bond} E{sub crit}/E{sub {psi}} > 1, where E{sub crit} = [2{pi}e{sup 3}ln{Lambda}(2n{sub e} + n{sub B})]/mc{sup 2} is the critical electric field [2] and E{sub {psi}} {approx} -[({mu}{sub 0}l{sub i})/4{pi}][-({partial_derivative}I{sub p}/{partial_derivative}t)+ {alpha}{sub L}(I{sub W}/{tau}{sub W})] is the toroidal electric field resulting from the decay of the plasma current I{sub p}. n{sub e} is the free electron density, n{sub B} is the bound electron density, {alpha}{sub L} {approx} 2[ln(8R/r{sub w})-2]/l{sub i} is the ratio of external (outside conducting wall) to internal (inside conducting wall) self-inductance, I{sub w} is the wall current, and {tau}{sub w} is the wall time. …
Date: June 27, 2007
Creator: Hollmann, E.; Jernigan, T.; Parks, P.; Baylor, L.; Boedo, J.; Combs, S. et al.
System: The UNT Digital Library
Externally Dispersed Interferometry for Precision Radial Velocimetry (open access)

Externally Dispersed Interferometry for Precision Radial Velocimetry

Externally Dispersed Interferometry (EDI) is the series combination of a fixed-delay field-widened Michelson interferometer with a dispersive spectrograph. This combination boosts the spectrograph performance for both Doppler velocimetry and high resolution spectroscopy. The interferometer creates a periodic spectral comb that multiplies against the input spectrum to create moire fringes, which are recorded in combination with the regular spectrum. The moire pattern shifts in phase in response to a Doppler shift. Moire patterns are broader than the underlying spectral features and more easily survive spectrograph blurring and common distortions. Thus, the EDI technique allows lower resolution spectrographs having relaxed optical tolerances (and therefore higher throughput) to return high precision velocity measurements, which otherwise would be imprecise for the spectrograph alone.
Date: March 27, 2007
Creator: Erskine, D. J.; Muterspaugh, M. W.; Edelstein, J.; Lloyd, J.; Herter, T.; Feuerstein, W. M. et al.
System: The UNT Digital Library
Asymptotic Analysis of Time-Dependent Neutron Transport Coupled with Isotopic Depletion and Radioactive Decay (open access)

Asymptotic Analysis of Time-Dependent Neutron Transport Coupled with Isotopic Depletion and Radioactive Decay

We describe an asymptotic analysis of the coupled nonlinear system of equations describing time-dependent three-dimensional monoenergetic neutron transport and isotopic depletion and radioactive decay. The classic asymptotic diffusion scaling of Larsen and Keller [1], along with a consistent small scaling of the terms describing the radioactive decay of isotopes, is applied to this coupled nonlinear system of equations in a medium of specified initial isotopic composition. The analysis demonstrates that to leading order the neutron transport equation limits to the standard time-dependent neutron diffusion equation with macroscopic cross sections whose number densities are determined by the standard system of ordinary differential equations, the so-called Bateman equations, describing the temporal evolution of the nuclide number densities.
Date: September 27, 2006
Creator: Brantley, P S
System: The UNT Digital Library
Melting line and fluid structure factor of oxygen up to 24 GPa (open access)

Melting line and fluid structure factor of oxygen up to 24 GPa

None
Date: March 27, 2007
Creator: Weck, G.; Loubeyre, P.; Eggert, J.; Mezouar, M. & Hanfland, M.
System: The UNT Digital Library
Resonant Auger Effect at High X-Ray Intensity (open access)

Resonant Auger Effect at High X-Ray Intensity

The resonant Auger effect of atomic neon exposed to high-intensity x-ray radiation in resonance with the 1s {yields} 3p transition is discussed. High intensity here means that the x-ray peak intensity is sufficient ({approx} 10{sup 18} W/cm{sup 2}) to induce Rabi oscillations between the neon ground state and the 1s{sup -1}3p ({sup 1}P) state within the relaxation lifetime of the inner-shell vacancy. For the numerical analysis presented, an effective two-level model, including a description of the resonant Auger decay process, is employed. Both coherent and chaotic x-ray pulses are treated. The latter are used to simulate radiation from x-ray free-electron lasers based on the principle of self-amplified spontaneous emission. Observing x-ray-driven atomic population dynamics in the time domain is challenging for chaotic pulse ensembles. A more practical option for experiments using x-ray free-electron lasers is to measure the line profiles in the kinetic energy distribution of the resonant Auger electron. This provides information on both atomic population dynamics and x-ray pulse properties.
Date: March 27, 2008
Creator: Rohringer, N & Santra, R
System: The UNT Digital Library
Analytic ICF Hohlraum Energetics (open access)

Analytic ICF Hohlraum Energetics

We apply recent analytic solutions to the radiation diffusion equation to problems of interest for ICF hohlraums. The solutions provide quantitative values for absorbed energy which are of use for generating a desired radiation temperature vs. time within the hohlraum. Comparison of supersonic and subsonic solutions (heat front velocity faster or slower, respectively, than the speed of sound in the x-ray heated material) suggests that there may be some advantage in using high Z metallic foams as hohlraum wall material to reduce hydrodynamic losses, and hence, net absorbed energy by the walls. Analytic and numerical calculations suggest that the loss per unit area might be reduced {approx} 20% through use of foam hohlraum walls. Reduced hydrodynamic motion of the wall material may also reduce symmetry swings, as found for heavy ion targets.
Date: August 27, 2003
Creator: Rosen, M D & Hammer, J
System: The UNT Digital Library
High-Resolution Adaptive Optics Test-Bed for Vision Science (open access)

High-Resolution Adaptive Optics Test-Bed for Vision Science

We discuss the design and implementation of a low-cost, high-resolution adaptive optics test-bed for vision research. It is well known that high-order aberrations in the human eye reduce optical resolution and limit visual acuity. However, the effects of aberration-free eyesight on vision are only now beginning to be studied using adaptive optics to sense and correct the aberrations in the eye. We are developing a high-resolution adaptive optics system for this purpose using a Hamamatsu Parallel Aligned Nematic Liquid Crystal Spatial Light Modulator. Phase-wrapping is used to extend the effective stroke of the device, and the wavefront sensing and wavefront correction are done at different wavelengths. Issues associated with these techniques will be discussed.
Date: September 27, 2001
Creator: Wilks, S. C.; Thomspon, C. A.; Olivier, S. S.; Bauman, B. J.; Barnes, T. & Werner, J. S.
System: The UNT Digital Library
Thermo-Gas-Dynamic Model of Afterburning in Explosions (open access)

Thermo-Gas-Dynamic Model of Afterburning in Explosions

A theoretical model of afterburning in explosions created by turbulent mixing of the detonation products from fuel-rich charges with air is described. It contains three key elements: (i) a thermodynamic-equilibrium description of the fluids (fuel, air, and products), (ii) a multi-component gas-dynamic treatment of the flow field, and (iii) a sub-grid model of molecular processes of mixing, combustion and equilibration.
Date: July 27, 2003
Creator: Kuhl, A L; Ferguson, R E & Bell, J B
System: The UNT Digital Library
Using pseudo transient continuation and the finite element method to solve the nonlinear Poisson-Boltzmann equation (open access)

Using pseudo transient continuation and the finite element method to solve the nonlinear Poisson-Boltzmann equation

The nonlinear Poisson-Boltzmann (PB) equation is solved using Pseudo Transient Continuation. The PB solver is constructed by modifying the nonlinear diffusion module of a 3D, massively parallel, unstructured-grid, finite element, radiation-hydrodynamics code. The solver also computes the electrostatic energy and evaluates the force on a user-specified contour. Either Dirichlet or mixed boundary conditions are allowed. The latter specifies surface charges, approximates far-field conditions, or linearizes conditions ''regulating'' the surface charge. The code may be run in either Cartesian, cylindrical, or spherical coordinates. The potential and force due to a conical probe interacting with a flat plate is computed and the result compared with direct force measurements by chemical force microscopy.
Date: December 27, 2000
Creator: Shestakov, A I; Milovich, J L & Noy, A
System: The UNT Digital Library
Optimum Vehicle Component Integration with InVeST (Integrated Vehicle Simulation Testbed) (open access)

Optimum Vehicle Component Integration with InVeST (Integrated Vehicle Simulation Testbed)

We have developed an Integrated Vehicle Simulation Testbed (InVeST). InVeST is based on the concept of Co-simulation, and it allows the development of virtual vehicles that can be analyzed and optimized as an overall integrated system. The virtual vehicle is defined by selecting different vehicle components from a component library. Vehicle component models can be written in multiple programming languages running on different computer platforms. At the same time, InVeST provides full protection for proprietary models. Co-simulation is a cost-effective alternative to competing methodologies, such as developing a translator or selecting a single programming language for all vehicle components. InVeST has been recently demonstrated using a transmission model and a transmission controller model. The transmission model was written in SABER and ran on a Sun/Solaris workstation, while the transmission controller was written in MATRIXx and ran on a PC running Windows NT. The demonstration was successfully performed. Future plans include the applicability of Co-simulation and InVeST to analysis and optimization of multiple complex systems, including those of Intelligent Transportation Systems.
Date: December 27, 2001
Creator: Ng, Walter; Paddack, Erma & Aceves, Salvador
System: The UNT Digital Library
Slow Nonradiative Decay for Rare Earths in KPb2Br5 and RbPb2Br5 (open access)

Slow Nonradiative Decay for Rare Earths in KPb2Br5 and RbPb2Br5

We report on spectroscopic investigations of Nd{sup 3+}- and Tb{sup 3+}- doped low phonon energy, moisture-resistant host crystals, KPb{sub 2}Br{sub 5} and RbPb{sub 2}Br{sub 5}, and their potential to serve as new solid state laser materials at new wavelengths, especially in the long wavelength infrared region. This includes emission spectra, emission lifetime measurements, Raman scattering spectra as well as calculations of the multiphonon decay rate, radiative lifetimes and quantum efficiencies for relevant (laser) transitions in these crystals.
Date: February 27, 2004
Creator: Rademaker, K.; Petermann, K.; Huber, G.; Krupke, W.; Page, R.; Payne, S. et al.
System: The UNT Digital Library