Architectural Analysis of a LLNL LWIR Sensor System (open access)

Architectural Analysis of a LLNL LWIR Sensor System

None
Date: November 26, 2013
Creator: Bond, E J; Curry, J R; LaFortune, K N & Williams, A M
System: The UNT Digital Library
Cast Stone Oxidation Front Evaluation: Preliminary Results For Samples Exposed To Moist Air (open access)

Cast Stone Oxidation Front Evaluation: Preliminary Results For Samples Exposed To Moist Air

The rate of oxidation is important to the long-term performance of reducing salt waste forms because the solubility of some contaminants, e.g., technetium, is a function of oxidation state. TcO{sub 4}{sup −} in the salt solution is reduced to Tc(IV) and has been shown to react with ingredients in the waste form to precipitate low solubility sulfide and/or oxide phases. Upon exposure to oxygen, the compounds containing Tc(IV) oxidize to the pertechnetate ion, Tc(VII)O{sub 4}{sup −}, which is very soluble. Consequently the rate of technetium oxidation front advancement into a monolith and the technetium leaching profile as a function of depth from an exposed surface are important to waste form performance and ground water concentration predictions. An approach for measuring contaminant oxidation rate (effective contaminant specific oxidation rate) based on leaching of select contaminants of concern is described in this report. In addition, the relationship between reduction capacity and contaminant oxidation is addressed. Chromate (Cr(VI) was used as a non-radioactive surrogate for pertechnetate, Tc(VII), in Cast Stone samples prepared with 5 M Simulant. Cast Stone spiked with pertechnetate was also prepared and tested. Depth discrete subsamples spiked with Cr were cut from Cast Stone exposed to Savannah River Site (SRS) …
Date: November 26, 2013
Creator: Langton, C. A. & Almond, P. M.
System: The UNT Digital Library
Final Scientific/Technical Report (open access)

Final Scientific/Technical Report

Led by James Madison University, Valley 25x?25 promotes using a diverse energy portfolio to achieve the goal of 25 percent renewable energy by 2025, including renewables like wind, biomass, solar, and geothermal. A primary emphasis is energy efficiency, which offers the best opportunities to decrease the use and impact of non-renewable energy sources. Endorsed by the national 25x?25 organization, Valley 25x?25 serves as an East Coast Demonstration Project, and as such, partners with regional businesses, local and state governments, institutions of higher education, and K-12 schools to explore how Valley resources can contribute to the development of innovative energy solutions.
Date: November 26, 2013
Creator: Newbold, Kenneth F.
System: The UNT Digital Library
MIXING STUDY FOR JT-71/72 TANKS (open access)

MIXING STUDY FOR JT-71/72 TANKS

All modeling calculations for the mixing operations of miscible fluids contained in HBLine tanks, JT-71/72, were performed by taking a three-dimensional Computational Fluid Dynamics (CFD) approach. The CFD modeling results were benchmarked against the literature results and the previous SRNL test results to validate the model. Final performance calculations were performed by using the validated model to quantify the mixing time for the HB-Line tanks. The mixing study results for the JT-71/72 tanks show that, for the cases modeled, the mixing time required for blending of the tank contents is no more than 35 minutes, which is well below 2.5 hours of recirculation pump operation. Therefore, the results demonstrate the adequacy of 2.5 hours’ mixing time of the tank contents by one recirculation pump to get well mixed.
Date: November 26, 2013
Creator: Lee, S.
System: The UNT Digital Library
Results For The Third Quarter 2013 Tank 50 WAC Slurry Sample (open access)

Results For The Third Quarter 2013 Tank 50 WAC Slurry Sample

This report details the chemical and radionuclide contaminant results for the characterization of the 2013 Third Quarter sampling of Tank 50 for the Saltstone Waste Acceptance Criteria (WAC) in effect at that time. Information from this characterization will be used by DWPF & Saltstone Facility Engineering (DSFE) to support the transfer of low-level aqueous waste from Tank 50 to the Salt Feed Tank in the Saltstone Facility in Z-Area, where the waste will be immobilized. This information is also used to update the Tank 50 Waste Characterization System.
Date: November 26, 2013
Creator: Bannochie, Christopher J.
System: The UNT Digital Library
Single-Step Syngas-to-Distillates (S2D) Synthesis via Methanol and Dimethyl Ether Intermediates: Final Report (open access)

Single-Step Syngas-to-Distillates (S2D) Synthesis via Methanol and Dimethyl Ether Intermediates: Final Report

The objective of the work was to enhance price-competitive, synthesis gas (syngas)-based production of transportation fuels that are directly compatible with the existing vehicle fleet (i.e., vehicles fueled by gasoline, diesel, jet fuel, etc.). To accomplish this, modifications to the traditional methanol-to-gasoline (MTG) process were investigated. In this study, we investigated direct conversion of syngas to distillates using methanol and dimethyl ether intermediates. For this application, a Pd/ZnO/Al2O3 (PdZnAl) catalyst previously developed for methanol steam reforming was evaluated. The PdZnAl catalyst was shown to be far superior to a conventional copper-based methanol catalyst when operated at relatively high temperatures (i.e., >300°C), which is necessary for MTG-type applications. Catalytic performance was evaluated through parametric studies. Process conditions such as temperature, pressure, gas-hour-space velocity, and syngas feed ratio (i.e., hydrogen:carbon monoxide) were investigated. PdZnAl catalyst formulation also was optimized to maximize conversion and selectivity to methanol and dimethyl ether while suppressing methane formation. Thus, a PdZn/Al2O3 catalyst optimized for methanol and dimethyl ether formation was developed through combined catalytic material and process parameter exploration. However, even after compositional optimization, a significant amount of undesirable carbon dioxide was produced (formed via the water-gas-shift reaction), and some degree of methane formation could not be …
Date: November 26, 2013
Creator: Dagle, Robert A.; Lebarbier, Vanessa MC; Lizarazo Adarme, Jair A.; King, David L.; Zhu, Yunhua; Gray, Michel J. et al.
System: The UNT Digital Library