DEPOSITION VELOCITY ESTIMATION WITH THE GENII V2 SOFTWARE (open access)

DEPOSITION VELOCITY ESTIMATION WITH THE GENII V2 SOFTWARE

In 2010, the Department of Energy (DOE) Chief of Nuclear Safety and Office of Health, Safety and Security (HSS), with the support of industry experts in atmospheric sciences and accident dose consequences analysis, performed detailed analyses of the basis for the dry deposition velocity (DV) values used in the MACCS2 computer code. As a result of these analyses, DOE concluded that the historically used default DV values of 1 centimeter/second (cm/s) for unfiltered/unmitigated releases and 0.1 cm/s for filtered/mitigated releases may not be reasonably conservative for all DOE sites and accident scenarios. HSS recently issued Safety Bulletin 2011-02, Accident Analysis Parameter Update, recommending the use of the newly developed default DV, 0.1 cm/s for an unmitigated/unfiltered release. Alternatively site specific DV values can be developed using GENII version 2 (GENII v2) computer code. Key input parameters for calculating DV values include surface roughness, maximum wind speed for calm, particle size, particle density and meteorological data (wind speed and stability class). This paper will include reasonably conservative inputs, and a truncated parametric study. In lieu of the highly-conservative recommended DV value (0.1cm/s) for unmitigated/unfiltered release, GENII v2 has been used to justify estimated 95th percentile DV values. Also presented here are …
Date: April 23, 2012
Creator: Hutchins, H.
Object Type: Article
System: The UNT Digital Library
Calculation of Neoclassical Toroidal Viscosity with a Particle Simulation in the Tokamak Magnetic Breaking Experiments (open access)

Calculation of Neoclassical Toroidal Viscosity with a Particle Simulation in the Tokamak Magnetic Breaking Experiments

Accurate calculation of perturbed distribution function #14;δf and perturbed magnetic fi eld #14;δB is essential to achieve prediction of non-ambipolar transport and neoclassical toroidal viscosity (NTV) in perturbed tokamaks. This paper reports a study of the NTV with a #14;δf particle code (POCA) and improved understanding of magnetic braking in tokamak experiments. POCA calculates the NTV by computing #14;f with guiding-center orbit motion and using #14;B from the ideal perturbed equilibrium code (IPEC). POCA simulations are compared with experimental estimations for NTV, which are measured from angular momentum balance (DIII-D) and toroidal rotational damping rate (NSTX). The calculation shows good agreement in total NTV torque for the DIII-D discharge, where an analytic neoclassical theory also gives a consistent result thanks to relatively large aspect-ratio and slow toroidal rotations. In NSTX discharges, where the aspect-ratio is small and the rotation is fast, the theory only gives a qualitative guide for predicting NTV. However, the POCA simulation largely improves the quantitative NTV prediction for NSTX. It is discussed that a self- consistent calculation of δ#14;B using general perturbed equilibria is eventually necessary since a non-ideal plasma response can change the perturbed eld and thereby the NTV torque.
Date: April 23, 2013
Creator: Kimin Kim, et al
Object Type: Report
System: The UNT Digital Library
Boron-10 ABUNCL Prototype Models And Initial Active Testing (open access)

Boron-10 ABUNCL Prototype Models And Initial Active Testing

The Department of Energy Office of Nuclear Safeguards and Security (NA-241) is supporting the project Coincidence Counting With Boron-Based Alternative Neutron Detection Technology at Pacific Northwest National Laboratory (PNNL) for the development of a 3He proportional counter alternative neutron coincidence counter. The goal of this project is to design, build and demonstrate a system based upon 10B-lined proportional tubes in a configuration typical for 3He-based coincidence counter applications. This report provides results from MCNPX model simulations and initial testing of the active mode variation of the Alternative Boron-Based Uranium Neutron Coincidence Collar (ABUNCL) design built by General Electric Reuter-Stokes. Initial experimental testing of the as-delivered passive ABUNCL was previously reported.
Date: April 23, 2013
Creator: Kouzes, Richard T.; Ely, James H.; Lintereur, Azaree T. & Siciliano, Edward R.
Object Type: Report
System: The UNT Digital Library
SPIN-TORQUE IN SYSTEMS WITH INHOMOGENEOUS MAGETIZATION (open access)

SPIN-TORQUE IN SYSTEMS WITH INHOMOGENEOUS MAGETIZATION

The work performed during the grant period focused on the phenomenon of spin-transfer torque. This is a quantum mechanical effect whereby the angular momentum of conduction electrons is transferred to the magnetization of ferromagnetic structures. Our work on this subject began with phenomenological drift-diffusion and Landau-Lifshitz-Gilbert equations to demonstrate unambiguously that unpolarized current flow from a nonmagnet into a ferromagnet can produce a precession-type instability of the magnetization. We then used Boltzmann calculations appropriate to spin-valve type magnetic heterostructures composed of a non-magnetic thin film sandwiched between two thin film layers with uniform magnetization. Perhaps our most important paper dealt with quantum and semi-classical calculations of spin-transfer torque in systems with domain walls and other inhomogeneous distributions of magnetization. The latter work caused us to suggest that the Landau-Lifshitz approach to magnetic damping provided a clearer picture of the physics than the more popular (but formally equivalent) Gilbert approach to damping. Finally, we returned to our Boltzmann calculations and made a serious effort to analyze experimental data on current-induced magnetization in switching in magnetic spin-valve structures. Our work was part of a world-wide effort to study and harness the transport of the electron's spin and was one of the first …
Date: April 23, 2013
Creator: Zangwill, Andrew
Object Type: Report
System: The UNT Digital Library
Generation and Characterization of Anisotropic Microstructures in Rare Earth-Iron-Boron Alloys (open access)

Generation and Characterization of Anisotropic Microstructures in Rare Earth-Iron-Boron Alloys

The goal of this work is to investigate methods in which anisotropy could be induced in fine-grained alloys. We have identified two general processing routes to creating a fine, textured microstructure: form an amorphous precursor and devitrify in a manner that induces texture or form the fine, textured microstructure upon cooling directly from the liquid state. Since it is possible to form significant amounts of amorphous material in RE-Fe-B alloys, texture could be induced through biasing the orientationof the crystallites upon crystallization of the amorphous material. One method of creating this bias is to form glassy material and apply uniaxial pressure during crystallization. Experiments on this are presented. All of the work presented here utilizes melt-spinning, either to create precursor material, or to achieve a desired final microstructure. To obtain greater control of the system to process these materials, a study was done on the effects of heating the wheel and modifying the wheel’s surface finish on glass formation and phase selection. The second general approach—creating the desired microstructure directly from the liquid—can be done through directional rapid solidification. In particular, alloys melt-spun at low tangential wheel speeds often display directional columnar growth through a portion of the ribbon. By …
Date: April 23, 2012
Creator: Oster, Nathaniel
Object Type: Thesis or Dissertation
System: The UNT Digital Library
Development of backlighting sources for a Compton Radiography diagnostic of Inertial Confinement Fusion targets (open access)

Development of backlighting sources for a Compton Radiography diagnostic of Inertial Confinement Fusion targets

An important diagnostic tool for inertial confinement fusion is time-resolved imaging of the dense cold fuel surrounding the hot spot. Here we report on the source and diagnostic development of hard x-ray radiography and on the first radiographs of direct drive implosions obtained at photon energies up to about 100keV, where the Compton effect is the dominant contributor to the shell opacity. The radiographs of direct drive, plastic shell implosions obtained at the OMEGA laser facility have a spatial resolution of {approx}10um and a temporal resolution of {approx}10ps. This novel Compton Radiography is an invaluable diagnostic tool for Inertial Confinement Fusion targets, and will be integrated at the National Ignition Facility (NIF).
Date: April 23, 2010
Creator: Tommasini, R
Object Type: Report
System: The UNT Digital Library
Demonstration of Tokamak Ohmic Flux Saving by Transient Coaxial Helicity Injection on NSTX (open access)

Demonstration of Tokamak Ohmic Flux Saving by Transient Coaxial Helicity Injection on NSTX

Transient Coaxial Helicity Injection (CHI) started discharges in NSTX have attained peak currents up to 300 kA and when these discharges are coupled to induction, it has produced up to 200 kA additional current over inductive-only operation. CHI in NSTX has shown to be energetically quite efficient, producing a plasma current of about 10 A/Joule of capacitor bank energy. In addition, for the first time, the CHI produced toroidal current that couples to induction continues to increase with the energy supplied by the CHI power supply at otherwise similar values of the injector flux, indicating the potential for substantial current generation capability by CHI in NSTX and in future toroidal devices. __________________________________________________
Date: April 23, 2010
Creator: Raman, R.; Mueller, D.; Nelson, B. A.; Jarboe, T. R.; Gerhardt, S.; Kugel, H. W. et al.
Object Type: Report
System: The UNT Digital Library
Final Report Theoretical Studies of Surface Reactions on Metals and Electronic Materials (open access)

Final Report Theoretical Studies of Surface Reactions on Metals and Electronic Materials

This proposal describes the proposed renewal of a theoretical research program on the structure and reactivity of molecules adsorbed on transition metal surfaces. A new direction of the work extends investigations to interfaces between solid surfaces, adsorbates and aqueous solutions and includes fundamental work on photoinduced electron transport into chemisorbed species and into solution. The goal is to discover practical ways to reduce water to hydrogen and oxygen using radiation comparable to that available in the solar spectrum. The work relates to two broad subject areas: photocatalytic processes and production of hydrogen from water. The objective is to obtain high quality solutions of the electronic structure of adsorbate-metal-surface-solution systems so as to allow activation barriers to be calculated and reaction mechanisms to be determined. An ab initio embedding formalism provides a route to the required accuracy. New theoretical methods developed during the previous grant period will be implemented in order to solve the large systems involved in this work. Included is the formulation of a correlation operator that is used to treat localized electron distributions such as ionic or regionally localized distributions. The correlation operator which is expressed as a two-particle projector is used in conjunction with configuration interaction.
Date: April 23, 2012
Creator: Whitten, Jerry L.
Object Type: Report
System: The UNT Digital Library
Tanks 18 And 19-F Structural Flowable Grout Fill Material Evaluation And Recommendations (open access)

Tanks 18 And 19-F Structural Flowable Grout Fill Material Evaluation And Recommendations

Cementitious grout will be used to close Tanks 18-F and 19-F. The functions of the grout are to: 1) physically stabilize the final landfill by filling the empty volume in the tanks with a non-compressible material; 2) provide a barrier for inadvertent intrusion into the tank; 3) reduce contaminant mobility by a) limiting the hydraulic conductivity of the closed tank and b) reducing contact between the residual waste and infiltrating water; and 4) providing an alkaline, chemically reducing environment in the closed tank to control speciation and solubility of selected radionuclides. The objective of this work was to identify a single (all-in-one) grout to stabilize and isolate the residual radionuclides in the tank, provide structural stability of the closed tank and serve as an inadvertent intruder barrier. This work was requested by V. A. Chander, High Level Waste (HLW) Tank Engineering, in HLW-TTR-2011-008. The complete task scope is provided in the Task Technical and QA Plan, SRNL-RP-2011-00587 Revision 0. The specific objectives of this task were to: 1) Identify new admixtures and dosages for formulating a zero bleed flowable tank fill material selected by HLW Tank Closure Project personnel based on earlier tank fill studies performed in 2007. The chemical …
Date: April 23, 2013
Creator: Langton, C. A. & Stefanko, D. B.
Object Type: Report
System: The UNT Digital Library
Plasma Transport at the Magnetospheric Flank Boundary. Final report (open access)

Plasma Transport at the Magnetospheric Flank Boundary. Final report

Progress is highlighted in these areas: 1. Model of magnetic reconnection induced by three-dimensional Kelvin Helmholtz (KH) modes at the magnetospheric flank boundary; 2. Quantitative evaluation of mass transport from the magnetosheath onto closed geomagnetic field for northward IMF; 3. Comparison of mass transfer by cusp reconnection and Flank Kelvin Helmholtz modes; 4. Entropy constraint and plasma transport in the magnetotail - a new mechanism for current sheet thinning; 5. Test particle model for mass transport onto closed geomagnetic field for northward IMF; 6. Influence of density asymmetry and magnetic shear on (a) the linear and nonlinear growth of 3D Kelvin Helmholtz (KH) modes, and (b) three-dimensional KH mediated mass transport; 7. Examination of entropy and plasma transport in the magnetotail; 8. Entropy change and plasma transport by KH mediated reconnection - mixing and heating of plasma; 9. Entropy and plasma transport in the magnetotail - tail reconnection; and, 10. Wave coupling at the magnetospheric boundary and generation of kinetic Alfven waves.
Date: April 23, 2012
Creator: Otto, Antonius
Object Type: Report
System: The UNT Digital Library
Status of the ADMX and ADMX-HF experiments (open access)

Status of the ADMX and ADMX-HF experiments

None
Date: April 23, 2013
Creator: Carosi, G. & van Bibber, K.
Object Type: Article
System: The UNT Digital Library
AB INITIO STUDY OF ADVANCED METALLIC NUCLEAR FUELS FOR FAST BREEDER REACTORS (open access)

AB INITIO STUDY OF ADVANCED METALLIC NUCLEAR FUELS FOR FAST BREEDER REACTORS

Density-functional formalism is applied to study the ground state properties of {gamma}-U-Zr and {gamma}-U-Mo solid solutions. Calculated heats of formation are compared with CALPHAD assessments. We discuss how the heat of formation in both alloys correlates with the charge transfer between the alloy components. The decomposition curves for {gamma}-based U-Zr and U-Mo solid solutions are derived from Ising-type Monte Carlo simulations. We explore the idea of stabilization of the {delta}-UZr{sub 2} compound against the {alpha}-Zr (hcp) structure due to increase of Zr d-band occupancy by the addition of U to Zr. We discuss how the specific behavior of the electronic density of states in the vicinity of the Fermi level promotes the stabilization of the U{sub 2}Mo compound. The mechanism of possible Am redistribution in the U-Zr and U-Mo fuels is also discussed.
Date: April 23, 2012
Creator: Landa, A; Soderlind, P; Grabowski, B; Turchi, P A; Ruban, A V & Vitos, L
Object Type: Article
System: The UNT Digital Library
PHOTOINDUCED CURRENTS IN CDZNTE CRYSTALS AS A FUNCTION OF ILLUMINATION WAVELENGTH (open access)

PHOTOINDUCED CURRENTS IN CDZNTE CRYSTALS AS A FUNCTION OF ILLUMINATION WAVELENGTH

We report variations in the currents of CdZnTe semiconductor crystals during exposure to a series of light emitting diodes of various wavelengths ranging from 470 to 950 nm. The changes in the steady-state current of one CdZnTe crystal with and without illumination along with the time dependence of the illumination effects are discussed. Analysis of the de-trapping and transient bulk currents during and after optical excitation yield insight into the behaviour of charge traps within the crystal. Similar behaviour is observed for illumination of a second CdZnTe crystal suggesting that the overall illumination effects are not crystal dependent.
Date: April 23, 2012
Creator: Teague, L.; Washington, A. & Duff, M.
Object Type: Article
System: The UNT Digital Library
There Goes the Neighborhood: Performance Degradation due to Nearby Jobs (open access)

There Goes the Neighborhood: Performance Degradation due to Nearby Jobs

None
Date: April 23, 2013
Creator: Bhatele, A; Mohror, K; Langer, S H & Isaacs, K E
Object Type: Article
System: The UNT Digital Library
Assessing the Effects of Data Compression in Simulations Using Physically Motivated Metrics (open access)

Assessing the Effects of Data Compression in Simulations Using Physically Motivated Metrics

None
Date: April 23, 2013
Creator: Laney, D; Langer, S; Weber, C; Lindstrom, P & Wegener, A
Object Type: Article
System: The UNT Digital Library