Search for B to rho/omega gamma decays at BaBar (open access)

Search for B to rho/omega gamma decays at BaBar

The authors present the results of the search for the decays B{sup 0/{+-}} {yields} {rho}{sup 0/{+-}}{gamma} (previously observed) and B{sup 0} {yields} {omega}{gamma} (for which currently only an upper limit exists). Together with B {yields} K*{gamma} decays, B {yields} ({rho}/{omega}){gamma} allow us to measure the ratio of CKM-matrix elements |V{sub td}/V{sub ts}|. The analysis is based on the full BABAR dataset of 424.35 fb{sup -1} corresponding to 465 million B{bar B} pairs, and makes heavy use of multivariate classification techniques based on decision trees. They find {Beta}(B{sup {+-}} {yields} {rho}{sup {+-}}{gamma}) = (1.20{sub -0.38}{sup +0.42} {+-} 0.20) x 10{sup -6}, {Beta}(B{sup 0} {yields} {rho}{sup 0}{gamma}) = (0.95{sub -0.21}{sup +0.23} {+-} 0.06) x 10{sup -6}, {Beta}(B{sup 0} {yields} {omega}{gamma}) = (0.51{sub -0.24}{sup +0.27} {+-} 0.10) x 10{sup -6}, where the first error is statistical and the second is systematic. They do not observe a statistically significant signal in the latter channel and set an upper limit at {Beta}(B{sup 0} {yields} {omega}{gamma}) < 0.9 x 10{sup -6} (90% C.L.). They also measure the isospin and SU(3){sub F} violating quantities {Lambda}(B{sup +} {yields} {rho}{sup +}{gamma})/2{Lambda}(B{sup 0} {yields} {rho}{sup 0}{gamma})-1 = -0.43{sub -0.22}{sup +0.25} {+-} 0.10 and {Lambda}(B{sup 0} {yields} {omega}{gamma})/{Lambda}(B{sup 0} {yields} {rho}{sup …
Date: September 23, 2008
Creator: Piatenko, Timofei & /SLAC, /Caltech
System: The UNT Digital Library
Intense Ion Beam for Warm Dense Matter Physics (open access)

Intense Ion Beam for Warm Dense Matter Physics

The Neutralized Drift Compression Experiment (NDCX) at Lawrence Berkeley National Laboratory is exploring the physical limits of compression and focusing of ion beams for heating material to warm dense matter (WDM) and fusion ignition conditions. The NDCX is a beam transport experiment with several components at a scale comparable to an inertial fusion energy driver. The NDCX is an accelerator which consists of a low-emittance ion source, high-current injector, solenoid matching section, induction bunching module, beam neutralization section, and final focusing system. The principal objectives of the experiment are to control the beam envelope, demonstrate effective neutralization of the beam space-charge, control the velocity tilt on the beam, and understand defocusing effects, field imperfections, and limitations on peak intensity such as emittance and aberrations. Target heating experiments with space-charge dominated ion beams require simultaneous longitudinal bunching and transverse focusing. A four-solenoid lattice is used to tune the beam envelope to the necessary focusing conditions before entering the induction bunching module. The induction bunching module provides a head-to-tail velocity ramp necessary to achieve peak axial compression at the desired focal plane. Downstream of the induction gap a plasma column neutralizes the beam space charge so only emittance limits the focused beam …
Date: May 23, 2008
Creator: Coleman, Joshua Eugene
System: The UNT Digital Library
Adsorbate structures and catalytic reactions studied in the torrpressure range by scanning tunneling microscopy (open access)

Adsorbate structures and catalytic reactions studied in the torrpressure range by scanning tunneling microscopy

High-pressure, high-temperature scanning tunneling microscopy (HPHTSTM) was used to study adsorbate structures and reactions on single crystal model catalytic systems. Studies of the automobile catalytic converter reaction [CO + NO {yields} 1/2 N{sub 2} + CO{sub 2}] on Rh(111) and ethylene hydrogenation [C{sub 2}H{sub 4} + H{sub 2} {yields} C{sub 2}H{sub 6}] on Rh(111) and Pt(111) elucidated information on adsorbate structures in equilibrium with high-pressure gas and the relationship of atomic and molecular mobility to chemistry. STM studies of NO on Rh(111) showed that adsorbed NO forms two high-pressure structures, with the phase transformation from the (2 x 2) structure to the (3 x 3) structure occurring at 0.03 Torr. The (3 x 3) structure only exists when the surface is in equilibrium with the gas phase. The heat of adsorption of this new structure was determined by measuring the pressures and temperatures at which both (2 x 2) and (3 x 3) structures coexisted. The energy barrier between the two structures was calculated by observing the time necessary for the phase transformation to take place. High-pressure STM studies of the coadsorption of CO and NO on Rh(111) showed that CO and NO form a mixed (2 x 2) structure …
Date: May 23, 2003
Creator: Hwang, Kevin Shao-Lin
System: The UNT Digital Library
Experimental Studies of Laser-Induced Breakdown in Transparent Dielectrics (open access)

Experimental Studies of Laser-Induced Breakdown in Transparent Dielectrics

The mechanisms by which transparent dielectrics damage when exposed to high power laser radiation has been of scientific and technological interest since the invention of the laser. In this work, a set of three experiments are presented which provide insight into the damage initiation mechanisms and the processes involved in laser-induced damage. Using an OPO (optical parametric oscillator) laser, we have measured the damage thresholds of deuterated potassium dihydrogen phosphate (DKDP) from the near ultraviolet into the visible. Distinct steps, whose width is of order K{sub b}T, are observed in the damage threshold at photon energies associated with the number of photons (3{yields}2 or 4{yields}3) needed to promote a ground state electron across the energy gap. The wavelength dependence of the damage threshold suggests that a primary mechanism for damage initiation in DKDP is a multi-photon process in which the order is reduced through excited defect state absorption. In-situ fluorescence microscopy, in conjunction with theoretical calculations by Liu et al., has been used to establish that hydrogen displacement defects are potentially responsible for the reduction in the multi-photon cross-section. During the damage process, the material absorbs energy from the laser pulse and produces an ionized region that gives rise to …
Date: September 23, 2003
Creator: Carr, C W
System: The UNT Digital Library
Neutron Capture and the Production of 60-Fe in Stellar Environments (open access)

Neutron Capture and the Production of 60-Fe in Stellar Environments

The observation of gamma rays associated with the decay of {sup 26}Al and {sup 60}Fe can provide important information regarding ongoing nucleosynthesis in our galaxy. The half-lives of these radioisotopes (7.2 x 10{sup 5} y and 1.5 x 10{sup 6} y, respectively) are long compared to the interval between synthesis events such as supernovae, so they build up in a steady state in the interstellar medium (centered on the galactic plane, where massive stars reside), yet short enough that gamma radiation from their decay may be detected. Additionally, these half-lifes are short compared to the period of galactic revolution, so that observable abundances remain in the proximity of their production sites. Predicted abundances of {sup 26}Al and {sup 60}Fe vary widely between several calculations in the last decade. In 2004, the first observation of the gamma ray flux from {sup 60}Fe decay was reported, with a {sup 60}Fe/{sup 26}Al flux ratio in good agreement with nucleosynthesis modeling from 1995. However, recent calculations that include well motivated updates to the stellar and nuclear physics, predict a flux ratio as much as six times higher than the observed value. It is desirable to understand the discrepancy between the latest calculation, which in …
Date: August 23, 2005
Creator: Kelley, K
System: The UNT Digital Library
THE APPLICATION OF SINGLE PARTICLE AEROSOL MASS SPECTROMETRY FOR THE DETECTION AND IDENTIFICATION OF HIGH EXPLOSIVES AND CHEMICAL WARFARE AGENTS (open access)

THE APPLICATION OF SINGLE PARTICLE AEROSOL MASS SPECTROMETRY FOR THE DETECTION AND IDENTIFICATION OF HIGH EXPLOSIVES AND CHEMICAL WARFARE AGENTS

Single Particle Aerosol Mass Spectrometry (SPAMS) was evaluated as a real-time detection technique for single particles of high explosives. Dual-polarity time-of-flight mass spectra were obtained for samples of 2,4,6-trinitrotoluene (TNT), 1,3,5-trinitro-1,3,5-triazinane (RDX), and pentaerythritol tetranitrate (PETN); peaks indicative of each compound were identified. Composite explosives, Comp B, Semtex 1A, and Semtex 1H were also analyzed, and peaks due to the explosive components of each sample were present in each spectrum. Mass spectral variability with laser fluence is discussed. The ability of the SPAMS system to identify explosive components in a single complex explosive particle ({approx}1 pg) without the need for consumables is demonstrated. SPAMS was also applied to the detection of Chemical Warfare Agent (CWA) simulants in the liquid and vapor phases. Liquid simulants for sarin, cyclosarin, tabun, and VX were analyzed; peaks indicative of each simulant were identified. Vapor phase CWA simulants were adsorbed onto alumina, silica, Zeolite, activated carbon, and metal powders which were directly analyzed using SPAMS. The use of metal powders as adsorbent materials was especially useful in the analysis of triethyl phosphate (TEP), a VX stimulant, which was undetectable using SPAMS in the liquid phase. The capability of SPAMS to detect high explosives and CWA …
Date: October 23, 2006
Creator: Martin, A
System: The UNT Digital Library