1 Matching Results

Results open in a new window/tab.

Neutron Capture and the Production of 60-Fe in Stellar Environments (open access)

Neutron Capture and the Production of 60-Fe in Stellar Environments

The observation of gamma rays associated with the decay of {sup 26}Al and {sup 60}Fe can provide important information regarding ongoing nucleosynthesis in our galaxy. The half-lives of these radioisotopes (7.2 x 10{sup 5} y and 1.5 x 10{sup 6} y, respectively) are long compared to the interval between synthesis events such as supernovae, so they build up in a steady state in the interstellar medium (centered on the galactic plane, where massive stars reside), yet short enough that gamma radiation from their decay may be detected. Additionally, these half-lifes are short compared to the period of galactic revolution, so that observable abundances remain in the proximity of their production sites. Predicted abundances of {sup 26}Al and {sup 60}Fe vary widely between several calculations in the last decade. In 2004, the first observation of the gamma ray flux from {sup 60}Fe decay was reported, with a {sup 60}Fe/{sup 26}Al flux ratio in good agreement with nucleosynthesis modeling from 1995. However, recent calculations that include well motivated updates to the stellar and nuclear physics, predict a flux ratio as much as six times higher than the observed value. It is desirable to understand the discrepancy between the latest calculation, which in …
Date: August 23, 2005
Creator: Kelley, K
System: The UNT Digital Library