Electrical aspects of rainout (open access)

Electrical aspects of rainout

Rainout commonly denotes the aggregate of phenomena associated with precipitation scavenging of radioactivity from a cloud of nuclear debris that is within a natural rain cloud. (In contrast, the term, washout, is applicable when the nuclear cloud is below the rain cloud and the term, fallout, commonly denotes the direct gravitational settling of contaminated solid material from a nuclear cloud.) Nuclear debris aerosols may be scavenged within natural clouds by a variety of different physical processes which may involve diffusion, convection, impaction, nucleation, phoresis, turbulence, and/or electricity among others. Processes which involve electrical aspects are scrutinized for their susceptibility to the intimate presence of the radioactive-cloud environment. This particular choice of electrical processes is not accidental. Nearly all of the listed processes were examined earlier by Williams. His rough estimates suggested that electrical effects, and to a lesser extent turbulence, could enhance the scavenging of those submicron aerosols which reside in the size-range that bridges the minimum in the scavenging rate coefficient which is commonly called the Greenfield gap. This minimum in the scavenging-rate coefficient is created by the simultaneous reduction of scavenging via diffusion and the reduction of scavenging via inertial impaction. However, Williams omitted the specific influence of …
Date: November 23, 1981
Creator: Rosenkilde, C.E.
Object Type: Report
System: The UNT Digital Library
Simulation of multi-frequency ECRH (open access)

Simulation of multi-frequency ECRH

We use a test particle simulation code to investigate electron cyclotron heating in a magnetic mirror well. A comparison is made between heating with one frequency and heating with two closely spaced frequencies. The code follows electron orbits in the presence of one or two monochromatic ECRH waves using guiding center equations and an equation for the electron gyrophase. Coulomb collisions with electrons and ions are simulated as a Monte Carlo scattering process. We find for the parameters of SM-1 that at the fundamental resonance the heating rate, or velocity rf diffusion coefficient, begins to decrease significantly from the quasilinear value for epsilon/sub e/ greater than or equal to 10 keV due to superadiabatic effects. As suggested by Howard et al., using multiple frequencies pushes the superadiabatic boundary to higher energies. For a given energy, the optimum frequency separations for two frequencies are those which cause the axial bounce resonances to interlace; i.e., odd multiples of the bounce frequency, ..omega../sub b/. This interlacing increases the chance of resonance overlap and thus stochasticity. If the frequency difference is equal to an even multiple of ..omega../sub b/, the diffusion coefficient returns to near its one frequency value. More generally, for more than …
Date: November 23, 1981
Creator: Rognlien, T.D.
Object Type: Article
System: The UNT Digital Library